矩陣A乘以A的轉置等於多少,矩陣A乘以A的轉置等於多少

2021-03-03 20:58:39 字數 3387 閱讀 7731

1樓:睦桂花成嬋

你好!是的,(a^t)(b^t)=(ba)^t,這是矩陣運算的基本性質。經濟數學團隊幫你解答,請及時採納。謝謝!

2樓:匿名使用者

若b為n階hermite正定矩陣,則存在n階矩陣a 且a為下三角矩陣,使得b等於 a乘以a的共軛轉置。放在實數域內就是 a乘以a的轉置矩陣了,呵呵,其實 這就是所謂矩陣的cholesky分解。

3樓:匿名使用者

若a為實矩陣,則a乘以a的伴隨矩陣為|a|e,其中|a|為a的行列式,e為單位矩陣。

4樓:

如果a是正交矩陣,那相乘就等於單位矩陣了,如果不是,那就是他們倆相乘啊

5樓:匿名使用者

這樣提問題不好回答

a是什麼? 矩陣還是向量? 具體等於什麼

請將原題說清楚可追問

矩陣a乘以a的轉置為什麼等於a的行列式的平方

6樓:angela韓雪倩

|||aa^t| = |a| |a^t| = |a||a| = |a|^2

det(ab)=det(a)det(b)(證明起來不那麼容易,也算是基本性

質之一)

det(a^t)=det(a)(行列式的基本性質)

∴det(a*a^t)=det(a)det(a^t)=det(a)^2

因為a*a^t是一個矩陣,而a的行列式的平方是一個數,兩者是不相等的。

擴充套件資料:

矩陣的乘法滿足以下運算律:

矩陣乘法不滿足交換律。

性質:①行列式a中某行(或列)用同一數k乘,其結果等於ka。

②行列式a等於其轉置行列式at(at的第i行為a的第i列)。

③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。

④行列式a中兩行(或列)互換,其結果等於-a。

7樓:歐陽李志鋒

你說的是||a||²吧,這個其實是矩陣的模來的,並不是|det(a)|²

向量的模的平方||x||²=x^(t)x

8樓:匿名使用者

^det(ab)=det(a)det(b)(證明起來不那麼容易,也算是基本性質之一)

det(a^t)=det(a)(行列式的基本性質)∴det(a*a^t)=det(a)det(a^t)=det(a)^2

你說的是這個意思吧?

實際上你的表述是不正確的,因為a*a^t是一個矩陣,而a的行列式的平方是一個數,兩者是不相等的

9樓:輕黍

因為經轉置行列式值不變???

10樓:w別y雲j間

||||

推理過程如下:

|aa^t| = |a| |a^t| = |a||a| = |a|^2

在數學中,矩陣(matrix)是一個按照長方陣列排列的複數或實數集合[1] ,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。

矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;電腦科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。

將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考矩陣理論。

在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。

11樓:信人尉遲靈雨

|aa^t|

=|a|

|a^t|

=|a||a|

=|a|^2

12樓:晁諾譙昌

因為|a|=|a'|

轉置矩陣的行列式等於原矩陣的行列式

而乘積矩陣的行列式等於行列式的乘積

|aa'|=|a||a'|

所以|aa'|=|a||a'|=|a||a|=|a|²

13樓:吸霾

沒說a是方陣啊,a不是方陣時怎麼求啊,有公式麼

矩陣a和a的轉置相乘得到的是什麼?

14樓:不是苦瓜是什麼

如果a是正交矩陣,那

相乘就等於單位矩陣了,如果不是,那就是他們倆相乘。

若b為n階hermite正定矩陣,則存在n階矩陣a 且a為下三角矩陣,使得b等於 a乘以a的共軛轉置。放在實數域內就是 a乘以a的轉置矩陣了,呵呵,其實 這就是所謂矩陣的cholesky分解。

設 a是 m×n 的矩陣。

可以通過證明 ax=0 和a'ax=0 兩個n元齊次方程同解證得 r(a'a)=r(a)

1、ax=0 肯定是 a'ax=0 的解,好理解。

2、a'ax=0 → x'a'ax=0 → (ax)' ax=0 →ax=0

故兩個方程是同解的。

同理可得 r(aa')=r(a')

另外 有 r(a)=r(a')

所以綜上 r(a)=r(a')=r(aa')=r(a'a)

15樓:匿名使用者

只能說a和a的轉置相乘可以得到一個對稱陣,沒有其它的一般性結論。

為什麼a的轉置乘以a等於a行列式的平方???

16樓:甜美志偉

推導過程如下:

由題目可得:

因為 |a|=|a'| 轉置矩陣的行列式等於原矩陣的行列式而乘積矩陣的行列式等於行列式的乘積 |aa'|=|a||a'|所以 :

|aa'|=|a||a'|=|a||a|=|a|²

17樓:匿名使用者

這題是求方程的解,也就是求一個列向量x,而x並不是矩陣,所以 x^t 乘 x 就等於

兩個向量之間的內積

內積公式

所以 x^t 乘 x 為:向量 x 模長的平方

劉老師你好,矩陣a的轉置乘以矩陣a,其秩會等於a嗎?

18樓:匿名使用者

a是實矩陣就可以

實矩陣是指a中元素都是實數

不一定是對稱矩陣.

此時 r(a^ta) = r(a)

證明方法是用齊次線性方程組 ax=0 與 a^tax=0 同解.

a不一定是方陣, 不一定可逆

19樓:

根據矩陣秩的定義結合行列式與轉置行列式相等顯然矩陣的秩與其轉轉置矩陣的秩相等

矩陣a乘以a的轉置為什麼等於a的行列式的平方

aa t a a t a a a 2 det ab det a det b 證明起來不那麼容易,也算是基本性 質之一 det a t det a 行列式的基本性質 det a a t det a det a t det a 2 因為a a t是一個矩陣,而a的行列式的平方是一個數,兩者是不相等的。擴...

零矩陣乘以任何矩陣都等於零矩陣嗎為什麼

零矩陣乘以任何矩陣都是零矩陣,根據的是矩陣的乘法法則,零矩陣在矩陣中的意義就相當於實數0在是實數中的意義,這一點是肯定的。矩陣不是一個數字,矩陣有維數,矩陣中所有元素為零才叫零矩陣,而且零矩陣可以寫出無數個,因為維數有不同,所以零矩陣不等於零常數.但是對於1 1維的矩陣,他由於只有一個元素,所以可以...

線性代數轉置後的矩陣與原矩陣有什麼關係

轉置後的bai矩陣 與原矩陣 1 如du果aat e e為單位矩陣zhi,at表示 矩陣a的轉置矩陣 dao或ata e,則n階實回矩陣a稱為正交矩陣。2 一階矩陣的答轉置不變。正交矩陣不一定是實矩陣。實正交矩陣 即該正交矩陣中所有元都是實數 可以看做是一種特殊的酉矩陣,但是存在一種復正交矩陣,復正...