為什麼曲線的凹凸性要求二階導,而不求三階或更多

2021-03-04 09:19:33 字數 2817 閱讀 2817

1樓:匿名使用者

一階導數對應曲線的變化如上升為正下降為負 此為曲線斜率。2階導數對應曲線斜率的變化如為正則曲率變大圖形變化為曲線上升加快看著是不是變的凹了

函式的凹凸性為什麼要用二階導數

2樓:晚夏落飛霜

一階導數反映的是函式斜率,而二階導數反映的是斜率變化的快慢,表現在函式的影象上就是函式的凹凸性。

f′′(x)>0,開口向上,函式為凹函式,f′′(x)<0,開口向下,函式為凸函式。

凸凹性的直觀理解:

設函式y=f(x)在區間i上連續,如果函式的曲線位於其上任意一點的切線的上方,則稱該曲線在區間i上是凹的;如果函式的曲線位於其上任意一點的切線的下方,則稱該曲線在區間i上是凸的。

確定曲線y=f(x)的凹凸區間和拐點的步驟:

1、確定函式y=f(x)的定義域;

2、求出在二階導數f"(x);

3、求出使二階導數為零的點和使二階導數不存在的點;4、判斷或列表判斷,確定出曲線凹凸區間和拐點。

3樓:angela韓雪倩

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

擴充套件資料:

設函式f(x)在區間i上定義,若對i中的任意兩點x1和x2,和任意λ∈(0,1),都有 f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等號嚴格成立,即"<"號成立,則稱f(x)在i上是嚴格凹函式。

如果"<="換成">="就是凸函式。類似也有嚴格凸函式。

設f(x)在區間d上連續,如果對d上任意兩點a、b恆有f((a+b)/2)<(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凹的(或凹弧);如果恆有f((a+b)/2)>(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凸的(或凸弧)

這個定義從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。 同理可知,如果函式影象在這兩點之間的部分總在連線這兩點線段的上方,那麼這個函式就是凸函式。

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凸函式的充要條件是f''(x)<=0;f(x)在區間i上是凹函式的充要條件是f''(x)>=0;

琴生(jensen)不等式(也稱為詹森不等式):(注意前提、等號成立條件)設f(x)為凸函式,則f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);設f(x)為凹函式,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),稱為琴生不等式。

加權形式為:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.

如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

4樓:

我是一線高中數學教師,希望能幫到你。

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

為什麼二階導數能判斷函式凹凸性?

5樓:匿名使用者

因為隨著凹凸變化,曲線的切線斜率會出現相應的改變。

1在凹最低處或凸最高內處,切線斜率為0,即一階容導數為02在凹圖象最低處左右,一階導數從最低處左方的》0趨於右方的<0,這一過程二階導數》0

在凸圖象最高處左右,一階導數從最高處左方的<0趨於右方的》0,這一過程二階導數<0

因此根據二階導數可以判斷函式的凹凸性質

為什麼函式在某點的二階導等於0而三階導不等於0,那麼該點就是拐點?

6樓:匿名使用者

不是的哦 是二階導數等於0求出後 在判斷區間左邊右邊的凹凸性 如果左邊和右邊的凹凸性不一樣 這個點才叫拐點的

為什麼三階導數等於1,就可以分析二階導數及其凹凸性?

7樓:匿名使用者

因為三階導數在x=0這一點等於1(就是大於0)所以二階導數在0點這裡是單調遞增,又二階導數在x=0時是等於0 所以二階導數在0左鄰域小於0 右鄰域大於0 所以左鄰域為凸函式 右鄰域為凹函式

二階導函式怎麼來判斷極大極小值,為什麼二階導函式大於零取極小值

如果要有極大極小值 首先要一階導數等於0 再求出二階導函式 此時如果f x0 0,那麼x x0就是極小值點而如果f x0 0,那麼x x0為極大值點x x0的話,還需要再進行討論 為什麼二階導函式大於零取極小值 答 一階導數是曲線的斜率,當一階導數大於0時,是增函式 而一階導數小於0時,是減函式,一...

一階導等於0,二階導等於0是什麼情況?為什麼可能為極小值,可能為極大值,可能無極值??請舉例說明

比如y x 2 一階導數在x 0時為0,x 0時為極小值 同樣,y x 2,x 0時為極大值。有如y x 3,x 0時,一階導數,二階導數均為0,但是在x 0時,既不是極小值也不是極大值。為什麼要一階導等於0二階導數大於0才有極小值 多元函式 的導數 不是 和一元函式一樣嘛 一階導數等於0,是駐點,...

為什麼要一階導等於0二階導數大於0才有極小值

多元函式 的導數 不是 和一元函式一樣嘛 一階導數等於0,是駐點,可能是極值,也可能不是二階導數小於0,極大值 二階導數等於0,不是極值。二階導數大於0,是極小值 一階導等於0,二階導數大於0什麼意思 代表該點為函式影象上的某個極小點。拓展資料 1.極值點是函式影象的某段子區間內上極大值或者極小值點...