為什麼二階導數不存在的點也可能是函式拐點

2021-03-07 07:54:14 字數 4148 閱讀 2427

1樓:demon陌

因為二階導數不存在的點,左右兩邊的二階導數的符號可能是不同的。

在數學上指改變曲線向上或向下方向的點,直觀地說拐點是使切線穿越曲線的點(即曲線的凹凸分界點)。若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)或不存在。

直接根據拐點的定義,可以得到曲線存在拐點的第一充分條件。

設函式f(x)在點

的某鄰域內具有二階連續導數,若

的兩側異號,則(

,f())是曲線y=f(x)的一個拐點;若的兩側同號,則(

,f())不是曲線的拐點。

擴充套件資料:可以按下列步驟來判斷區間i上的連續曲線y=f(x)的拐點:

⑴求f''(x);

⑵令f''(x)=0,解出此方程在區間i內的實根,並求出在區間i內f''(x)不存在的點;

⑶對於⑵中求出的每一個實根或二階導數不存在的點,檢查f''(x)在

左右兩側鄰近的符號,那麼當兩側的符號相反時,點(,f())是拐點,當兩側的符號相同時,點(,f())不是拐點。

2樓:蘇堤舊事

是的。函式的拐點可能是二階導數等於 0 的點和不存在的點。

拐點,又稱反曲點,在數學上指改變曲線向上或向下方向的點,直觀地說拐點是使切線穿越曲線的點(即曲線的凹凸分界點)。若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)或不存在。

在生活中借指事物的發展趨勢開始改變的地方(例如:經濟執行出現回升拐點)

3樓:匿名使用者

拐點是連續曲線的凹弧與凸弧的分界點,

只要曲線在某點連續,

然後在該點兩邊的凹凸性不同,該點就是拐點,與這一點是否有二階導數沒有必然聯絡。

高等數學,函式的拐點,請問下為什麼0處的二階導數不存在,它還是拐點呢?求助大神~~

4樓:demon陌

一階導數不存在的點,有可能是極值點,同樣,二階導數不存在的點,有可能是拐點, 只要該點兩側二階導數變號,該點二階導數不存在,也是拐點。

拐點使切線穿越曲線的點(即曲線的凹凸分界點)。若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)或不存在。

函式y=f(x)的導數yˊ=fˊ(x)仍然是x的函式,則y′′=f′′(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

二階導數不存在的點,有可能是拐點嗎?

5樓:禮禎晉睿聰

因為二階bai導數不存在的點,左du右兩邊的二階導數的zhi符號可能是dao不同的。

在數專學上指改變曲線向上或向屬下方向的點,直觀地說拐點是使切線穿越曲線的點(即曲線的凹凸分界點)。若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)或不存在。

直接根據拐點的定義,可以得到曲線存在拐點的第一充分條件。

設函式f(x)在點

的某鄰域內具有二階連續導數,若

的兩側異號,則(

,f())是曲線y=f(x)的一個拐點;若的兩側同號,則(

,f())不是曲線的拐點。

擴充套件資料:

可以按下列步驟來判斷區間i上的連續曲線y=f(x)的拐點:

⑴求f''(x);

⑵令f''(x)=0,解出此方程在區間i內的實根,並求出在區間i內f''(x)不存在的點;

⑶對於⑵中求出的每一個實根或二階導數不存在的點,檢查f''(x)在

左右兩側鄰近的符號,那麼當兩側的符號相反時,點(,f())是拐點,當兩側的符號相同時,點(,f())不是拐點。

6樓:蘇堤舊事

bai是的。函式的拐點可能是du二階導數等zhi於 0 的點和不存在的dao點。內

拐點,又稱反容曲點,在數學上指改變曲線向上或向下方向的點,直觀地說拐點是使切線穿越曲線的點(即曲線的凹凸分界點)。若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)或不存在。

在生活中借指事物的發展趨勢開始改變的地方(例如:經濟執行出現回升拐點)

二階導不存在的點會是拐點嗎?

7樓:倪家小百科

可以的,理論上講bai一般說二階導數是0就是

du拐zhi點是不對的,而是說dao在某點兩側二階導數變內號,那麼該點是拐點。如果二階容導數連續,當然我們可以推出這個點的二階導數是0,因為左右不同號嘛。但是如果允許二階導數不連續,你完全可以構造一個在某個點沒有值的,只要兩邊變號,也可以說是拐點。

為什麼二階導數等於0是拐點不是還有不存在點嗎

8樓:不是苦瓜是什麼

對於一copy元函式有,可微<=>可導bai=>連續=>可積對於多元函式,du不存在可導的概zhi念,只有偏dao導數存在。函式在某處可微等價於在該處沿所有方向的方向導數存在,僅僅保證偏導數存在不一定可微,因此有:可微=>偏導數存在=>連續=>可積。

可導與連續的關係:可導必連續,連續不一定可導;

可微與連續的關係:可微與可導是一樣的;

可積與連續的關係:可積不一定連續,連續必定可積;

可導與可積的關係:可導一般可積,可積推不出一定可導;

9樓:隋丹受鵑

是的。拐點處的二階導數都為0,如果二階導數等於0還要證明該點的左邊和右邊二階導數符號相反

回,即左負右答正或左正右負才是拐點。否則就是不存在。

一階導數描述函式的變化,二階導數描述一階導數的變化,也就是斜率的變化情況。

二階導數為0,那說明斜率也是0.

10樓:刀淑琴蹉戊

是的bai。函式的拐點

可能是二du階導數等於

0的點zhi和dao不存在的點。

拐點,又稱反曲點內,在數學上指改變曲線向上容或向下方向的點,直觀地說拐點是使切線穿越曲線的點(即曲線的凹凸分界點)。若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)或不存在。

在生活中借指事物的發展趨勢開始改變的地方(例如:經濟執行出現回升拐點)

高數:拐點是可導點嗎?為什麼求拐點的時候要找導數不存在的點?

11樓:demon陌

分情況的。

拐點可能是下列3類點:

一階導數不存在的點;

一階導數存在,而二階導數不存在的點(這類問題比較少見);

二階導數存在時,二階導數為0的點。

拐點是凹凸分界點,是二階導數為0 的點。 二階導數大於0,曲線上凹,反之,上凸。 三階導數大於0的點肯定是拐點的情況,必須要求在這點二階導數等於0。

因為三階導數大於0,二階導數單調,在這點二階導數等於0,在這點左右二階導數符號發生變化,凹凸性發生變化。小於0 的情況亦然。

12樓:匿名使用者

例如函式

這個函式在x=0點連續但是不可導。

而這個函式在x<0的時候是凹函式,

在x>0的時候是凸函式。

所以x=0是這個函式的拐點。

所以拐點可能是不可導的點。

13樓:溫水燒開不再冷

拐點可能是下列3類點:

一階導數不存在的點,

一階導數存在,而二階導數不存在的點(這類問題比較少見),二階導數存在時,二階導數為0的點.

拐點是凹凸分界點,是二階導數為0 的點,。 二階導數大於0,曲線上凹,反之,上凸。 三階導數大於0的點肯定是拐點的情況,必須要求在這點二階導數等於0,。

因為三階導數大於0,二階導數單調,在這點二階導數等於0,在這點左右二階導數符號發生變化,凹凸性發生變化。小於0 的情況亦然。

2階導數為0的點或2階導數不存在的點不一定是函式的拐點,誰能舉個例子呢

14樓:匿名使用者

一樓例子舉錯了,應該舉y=x^4(x的4次方)在x=0點二階導數為0,不是拐點。

15樓:匿名使用者

x的3次方copy

在0點2階導數為0,但不是

bai拐點

2次根號x在du0點處沒有2階導數,但0不是zhi拐點例子沒有舉錯,二樓,daox的4次方影象在0點處明顯不是拐點,另外x的3次方在0點處2階導數為0,一階導數都大於0,是拐點沒錯

在一點處的二階導數不存在,一階導數是否也不存在

不一定,二階導不存在的話,一階導是可能存在的。反之一階導如果不存在,二階導一定不存在。例 y x 4 3 該函式在x 0處二階導數不存在,但一階導數存在。不一定y x 3 2 y x 1 2 y 1 2x 1 2 不是,一階導數是就它的單調性,二階導數是求極值 設某一點處存在二階導數,那麼在該點處的...

為什麼二階導數等於0是拐點不是還有不存在點嗎

是的。拐點處的二階導數都為0,如果二階導數等於0還要證明該點的左邊和右邊二階導數符號相反,即左負右正或左正右負才是拐點。否則就是不存在。一階導數描述函式的變化,二階導數描述一階導數的變化,也就是斜率的變化情況。二階導數為0,那說明斜率也是0.拐點真的能說明該點二階導數是0或不存在嗎?其實你說的那些充...

不存在駐點如何求最大值,為什麼導數不存在的點也有可能是極值點?怎麼判定他是不可導點

首先,判斷該點函式值是極大值還是極小值,方法 求函式二階導數,在該駐點二階導數值大於0,則為該點函式值為極小值,小於0則為極大值,等於0則不是極值。然後,求定義域邊界函式值,與極值相比較,找出最大值和最小值。求其邊界點的值,望採納 如果函式有唯一的駐點,怎麼判斷是最大值還是最小值 駐點為x a,判斷...