1樓:眾裡求真
函式f(
x)在區間[0,1]上可導,說明f(x)在區間[0,1]是連續的,必然存在一個點x0在(0,1)版內使得權f(x0)=[f(0)+f(1)]/2=0.5成立。那麼1/f(x0)+1/f(0)=1/0.
5+0也成立。
設函式f(x)在[0,1]上連續,在(0,1)內可導,有f(1)=0.證明:至少存在一點ε∈(0,1),使f'(x)=-f(ε)/ε。
2樓:你愛我媽呀
證明過程如下:
設g(x)=xf(x),
則g'(x)=xf'(x)+f(x) , g(1)=1f(1)=0 , g(0)=0*f(0)=0。
所以g(x)在[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中值定理得:
存在一點ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0.
所以f'(ε)=-f(ε)/ε。
3樓:匿名使用者
證明:設g(x)=xf(x),
則g'(x)=xf'(x)+f(x) , g(1)=1f(1)=0 , g(0)=0*f(0)=0
所以g(x)在[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中值定理得:
存在一點ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0
所以f'(ε)=-f(ε)/ε
設函式f(x)在區間[0,1]上連續,在區間(0,1)內可導,且有f(1)=0。證明:至少存在一點
4樓:戒貪隨緣
設f(x)=xf(x)
因為 f(x)在區
間[0,1]上連
續,在區間(0,1)內可導
得f(x)在在區間[0,1]上連續,在區間(0,1)內可導且f'(x)=f(x)+xf'(x)
又f(1)=0 ,得f(0)=f(1)=0根據羅爾定理版得
存在權a∈(0,1),使f'(a)=(a)+af'(a)=0所以存在a∈(0,1),使f(a)+af'(a)=0希望能幫到你!
設函式fx在區間上二階可導,且f00,fx0,證明fx
因為 f x 0 所以 f x 為增函式 又有f 0 0 則f x 在 0,1 內單調遞增 且f x 0 所以命題得證 這個很明顯bai 你畫個du影象就知道了,zhi兩次導數意思就是說導函式是遞dao增的,導回函式遞增答的,就說明函式的增長速度越來越快,導函式都越來越大了,那麼原函式能不更大麼?導...
設函式fx在區間上連續,在區間0,1內可導
設f x xf x 因為 f x 在區 間 0,1 上連 續,在區間 0,1 內可導 得f x 在在區間 0,1 上連續,在區間 0,1 內可導且f x f x xf x 又f 1 0 得f 0 f 1 0根據羅爾定理版得 存在權a 0,1 使f a a af a 0所以存在a 0,1 使f a a...
設函式f x 在區間上具有二階導數,且f
這道題能得出兩個點是0的點。第一個是f 0 用的是保號性,負代換做一下就行了。第二個就是17年的真題,用的也是保號性,證出 0,0 區域裡有fx 0,f 1 大於0,零點定理,至少存一 lim趨於0 f x x小於0,說明在x趨於0 的鄰域中,x大於0,而f x 小於0,又因為f1大於0,由連續函式...