下面的矩陣是不是行階梯型矩陣?為什麼

2021-04-20 15:30:23 字數 2905 閱讀 1485

1樓:匿名使用者

是的,來

定義**性源代數中,矩陣是行階bai

梯形矩陣(row-echelon form),如果:

所有du非零行(矩陣zhi的行至

dao少有一個非零元素)在所有全零行的上面。即全零行都在矩陣的底部。

非零行的首項係數(leading coefficient),也稱作主元, 即最左邊的首個非零元素(某些地方要求首項係數必須為1),嚴格地比上面行的首項係數更靠右。

什麼是行階梯形矩陣,行最簡矩陣。說的通俗點 5

2樓:匿名使用者

■ 行階梯矩陣: ① 首元不一定是1,首元所在列的下方元素全為0 (上方不一定為0 );② 首元所在行的左邊元素全為0;③ 隨行數遞增首元右邊元素遞減;④ 一個階梯=一個非0行。若階梯數=k,則非0行=k,∴矩陣秩=k。

■ 行最簡矩陣: ①首元一定是1,首元1所在列的上下元素全為0;②首元1所在行的左邊元素全為0;③隨行數遞增首元1右邊元素遞減;④若有k個非0行,則矩陣秩=k;⑤方程組∞多解時用解空間基的線性迭加表示向量解。行最簡矩陣中《全0行》表示解空間基向量個數。

每個全0行寫成【xⅰ=ⅹⅰ】形式。⑥多於自由未知量數的《全0行》為多餘方程,捨去。

■ 行最簡矩陣一定是行階梯矩陣;行階梯矩陣未必是行最簡矩陣。如今應用最多是《行最簡矩陣》。

3樓:和塵同光

階梯形矩陣的特點:每行的第一個非零元的下面的元素均為零,且每行第一個非零元的列數依次增大,全為零的行在最下面

行簡化矩陣的特點:每行的第一個非零元均為1,其上下的元素均為零,且每行第一個非零元的列數依次增大,全為零的行在最下面。

行階梯形矩陣的作用和意義是什麼?

4樓:巴黎鐵塔下等

行階梯形矩陣,可以用於快速判斷矩陣的秩,

還可以很快看出方陣是否可逆,

另外,還可以看出矩陣中線性無關的列向量,

以及找出極大線性無關組,同時快速將其餘向量用這個極大線性無關組線性表示。

如果一個矩陣滿足:(1)所有非零行(矩陣的行至少有一個非零元素)在所有全零行的上面.即全零行都在矩陣的底部。

(2)非零行的首項(即最左邊的首個非零元素),也稱作主元,嚴格地比上面行的首項更靠右。

(3)首項所在列,在該首項下面的元素都是零;

例如,下面4×5矩陣是行階梯形矩陣:

1 2 3 4 5

0 0 2 -1 3

0 0 0 1 2

0 0 0 0 0

什麼是階梯形矩陣?

5樓:娛樂大潮咖

階梯型矩陣

是矩陣的一種型別。他的基本特徵是如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。

1、階梯型矩陣必須滿足的兩個條件:

(1)如果它既有零行,又有非零行,則零行在下,非零行在上。

(2)如果它有非零行,則每個非零行的第一個非零元素所在列號自上而下嚴格單調上升。

2、階梯型矩陣的基本特徵:

如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。

3、階梯型矩陣的畫法:

(1)畫法一:

(2)畫法二:

(3)畫法三:

擴充套件資料:

行最簡形矩陣:

在矩陣中可畫出一條階梯線,線的下方全為0,每個臺階只有一行,臺階數即是非零行的行數,階梯線的豎線(每段豎線的長度為一行)後面的第一個元素為非零元,也就是非零行的第一個非零元,則稱該矩陣為行階梯矩陣。若非零行的第一個非零元都為1,且這個非零元所在的列的其他元素都為0,則稱該矩陣為行最簡形矩陣。

1、行最簡形矩陣滿足兩條件:

(1)它是行簡化階梯形矩陣;

(2)非零首元都為1。

2、行最簡形矩陣的性質:

(1)行最簡形矩陣是由方程組唯一確定的,行階梯形矩陣的行數也是由方程組唯一確定的。

(2)行最簡形矩陣再經過初等列變換,可化成標準形。

(3)行階梯形矩陣且稱為行最簡形矩陣,即非零行的第一個非零元為1,且這些非零元所在的列的其他元素都是零。

6樓:慕容清新

一個矩陣成為階梯型矩陣,需滿足兩個條件:   (1)如果它既有零行,又有非零行,則零行在下,非零行在上。   (2)如果它有非零行,則每個非零行的第一個非零元素所在列號自上而下嚴格單調上升。

  階梯型矩陣的基本特徵:   如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。特點(每個階梯只有一行;元素不為0的行(非零行)的第一個非零元素的列標隨著行標增大而嚴格增大(列標一定不小於行標);元素全為0的行(如果有的話)必在矩陣的最下面幾行)

任意矩陣可經過有限次初等行變換化為階梯型矩陣

請問下題中的矩陣a經過初等行變換得到的規範階梯形矩陣如果不是單位矩陣,那這題還有解嗎 10

7樓:山野田歩美

任一矩陣a總可以經初等行變換化為簡化行階梯形矩陣ba與b一般不相等(a本身就是簡化行階梯形矩陣時就不用化了)a與b等價, 且存在可逆矩陣p, 使 pa = b這意味著兩個矩陣的行向量組是等價的

簡化行階梯形矩陣有什麼用:

1. 解線性方程組

2. 求矩陣的秩

3. 求矩陣的列向量組的極大無關組, 並將其餘列向量則極大無關組線性表示出來

急急急!行階梯形矩陣一定要有零行嗎?

8樓:匿名使用者

不需要,例如單位矩陣e,也可以視為一種特殊的行階梯型矩陣。

但是單位矩陣e是沒有0行的。

此外,行階梯型矩陣也可以沒有非零行,即0矩陣也是一種特殊的行階梯型矩陣。

這個選什麼?行簡化階梯形矩陣是最簡階梯型矩陣嗎

1.把任意一個矩陣 a化成行階梯型矩陣和簡化行階梯形矩陣的時候,能同時用初等行變換和初等列變換嗎?用階梯型矩陣求秩的時候呢?都是可以的.用初等行變換和初等列變換得到的結果是不同的,當然可以,即使只用一種變換,得到的結果也可能不同.2.表示矩陣外面用的是中括號還是小括號啊?年代不同了,以前用中括號的多...

求下列矩陣的行階梯型,行最簡式和標準式

紅色是行階梯型,藍色是行最簡形,粉色是標準型 線性代數 求矩陣的秩,是把矩陣化為行階梯形還是化為行最簡形?求解釋 一般來說,題目只是需要求矩陣的秩的話,只化成行階梯型就行了。但是如果是還要求線性方程組的解的話,化成最簡形。都可以,一般化成行階梯形即可。線性代數,什麼是行階梯形,行最簡形,等價標準型矩...

為什麼矩陣的秩等於其行階梯行矩陣非零行的行數?詳細一點哈?謝

行階梯矩陣非零行的首非零元 個數 非零行數 所在的列是線性無關的,且其餘向量可由它們線性表示。所以它們是a的列向量組的一個極大無關組。所以a的列秩 非零行的行數 所以a的秩 非零行的行數 舉例 比如 a a1,a2,a3,a4 經過初等行變換化成1 2 3 4 0 0 1 5 0 0 0 0 那麼 ...