1樓:匿名使用者
^^^題目不明確,應為 ∑(-1)^n [(n+1)!/n^(n-1)] 吧!
ρ = lim→∞
版>|a/a|
= lim(n+2)! n^(n-1)/[(n+1)^n (n+1)!]
= lim(n+2) n^(n-1)/[(n+1)^n ]
= lim(n+2)/(n+1) lim[n/(n+1)]^(n-1)
= 1* lim^[-(n-1)/(n+1)]
= e^lim-(n-1)/(n+1) = e^lim-(1-1/n)/(1+1/n) = 1/e < 1.
原級數權絕對收斂。
2樓:redd李德和眾國
有沒有-1是-1的n次?不然沒什麼意思呀
冪級數(-1)^n•1/n+1是絕對收斂還是條件收斂
3樓:小小芝麻大大夢
條件收斂。
分析過程如下:
(1)因為|(-1)^n/(n+1)|=1/(n+1),而∑1/(n+1)發散,所以∑|(-1)^n/(n+1)|發散;
(2)因為1/(n+1)單調遞減且lim(n—>無窮)1/(n+1)=0,所以由leibniz交錯級數判別法知∑(-1)^n/(n+1)收斂。
綜上,冪級數(-1)^n•1/n+1條件收斂。
4樓:drar_迪麗熱巴
條件收斂.
(1)因為|(-1)^n/(
n+1)|=1/(n+1),而∑1/(n+1)發散,所以∑|(-1)^n/(n+1)|發散;
(2)因為1/(n+1)單調遞減且lim(n—>無窮)1/(n+1)=0,所以由leibniz交錯級數判別法知∑(-1)^n/(n+1)收斂.
綜上,級數條件收斂.
條件收斂
一般的級數u1+u2+...+un+...
它的各項為任意級數。
如果級數σu各項的絕對值所構成的正項級數σ∣un∣收斂,則稱級數σun絕對收斂。
如果級數σun收斂,
而σ∣un∣發散,
則稱級數σun條件收斂。
判定級數∑(∞,n=1)[n(-1)^(n+1)/3ⁿ 是絕對收斂,條件收斂,還是發散? 5
5樓:玲玲幽魂
如果通項就是((-1)^n/√n)+(1/n),那麼級數發散.
原因是∑(-1)^n/√n收斂(leibniz判別法,交錯級數,絕對值單調趨於
內0),而∑1/n發散.
一個收斂級容數與一個發散級數的和是發散的.
如果原題通項是(-1)^n/√(n+1/n),那麼級數收斂.
同樣是由leibniz判別法(n+1/n單調遞增).
取絕對值後,通項1/√(n+1/n)與1/√n是等價無窮小.
根據比較判別法,∑1/√(n+1/n)發散.
因此級數是條件收斂的.
判斷級數(n=1→∞)∑(-1)^n*ln[(n+1)/n]是絕對收斂還是條件收斂?
6樓:西門樹枝洪辛
級數(n=1→∞
)∑(-1)^n*ln[(n+1)/n]=級數(n=1→∞)∑(-1)^nan
|(-1)^n*an|=ln(n+1)/n=ln(1+1/n)而lim(n→∞
)ln(1+1/n)/(1/n)=1
(羅必塔)
而∑1/n是發散的,所以∑版ln(1+1/n)是發散的所以不是權絕對收斂
而an=ln(1+1/n)>an+1=ln(1+1/(n+1))lim(n→∞)an=lim(n→∞)
ln(1+1/n)=0
所以由萊布里茨判別定理,可知該交錯級數收斂所以級數(n=1→∞)∑(-1)^n*ln[(n+1)/n]是條件收斂
7樓:完廣英鹿淑
如果通抄
項就是((-1)^n/√襲n)+(1/n),那麼級數發散.
原因是∑(-1)^n/√n收斂(leibniz判別法,交錯級數,
絕對值單調趨於
0),而∑1/n發散.
一個收斂級數與一個發散級數的和是發散的.
如果原題通項是(-1)^n/√(n+1/n),那麼級數收斂.
同樣是由leibniz判別法(n+1/n單調遞增).
取絕對值後,
通項1/√(n+1/n)與1/√n是等價無窮小.
根據比較判別法,
∑1/√(n+1/n)發散.
因此級數是條件收斂的.
∑(-1)^n*(2n-1)!!/(2n)!!,這個級數收斂嗎,判斷是絕對還是條件收斂,給思路或解答 5
8樓:匿名使用者
判斷完收斂基礎上,由數學歸納法可證得(2n-1)!!/(2n)!!>1/n,即可說明條件收斂。
9樓:匿名使用者
上下同乘(2n)!!
分子是(2n)!
分母是[ 2^n * n! ]^2
再利用組合數證明
10樓:恕
un遞減 , 再證明 un趨向於0,這個證明要用到2大於根號下1乘以3 ,分母這樣依次放縮
交錯級數1nn1n的斂散性
是 1 n n 1 n 2 這個級數不?在交錯級數中,常用萊布尼茨判別法來判斷級數的收斂性,即若交錯級數各項的絕對值單調遞減且極限是零,則該級數收斂 如果是上述級數,則有 絕對值n 1 n 2 單調遞減,且極限為零於是這個級數收斂 交錯級數 1 n 2n n 2 1 的斂散性,如果收斂,是絕對收斂還...
求極限limn 1 nn,求極限limn (1 1 n) n 詳細過程?
原式 lim exp ln n n exp lim ln n n 洛必達法則 exp 1 n exp0 1不定積分的公式 1 a dx ax c,a和c都是常數2 x a dx x a 1 a 1 c,其中a為常數且 a 1 3 1 x dx ln x c4 a x dx 1 lna a x c,其...
求冪級數n 1 n n 1 x n的在其收斂域的和函式
設其和函式為f x xf x 就變成 x n 1 n 1的冪級數,對新的冪級數逐項求導。顯然由比bai值審斂法易知其收斂域為 1,1 du n 1 n x n 1 1 n x n x n 1 n x n x 1 x 1 n x n 令f x 1 n x n 則f x x n 1 1 1 x 所以f ...