判定級數 n 11)n(n 1n n 1是否收斂是絕對收斂還是條件收斂

2021-04-20 23:03:44 字數 2602 閱讀 4072

1樓:匿名使用者

^^^題目不明確,應為 ∑(-1)^n [(n+1)!/n^(n-1)] 吧!

ρ = lim→∞

版>|a/a|

= lim(n+2)! n^(n-1)/[(n+1)^n (n+1)!]

= lim(n+2) n^(n-1)/[(n+1)^n ]

= lim(n+2)/(n+1) lim[n/(n+1)]^(n-1)

= 1* lim^[-(n-1)/(n+1)]

= e^lim-(n-1)/(n+1) = e^lim-(1-1/n)/(1+1/n) = 1/e < 1.

原級數權絕對收斂。

2樓:redd李德和眾國

有沒有-1是-1的n次?不然沒什麼意思呀

冪級數(-1)^n•1/n+1是絕對收斂還是條件收斂

3樓:小小芝麻大大夢

條件收斂。

分析過程如下:

(1)因為|(-1)^n/(n+1)|=1/(n+1),而∑1/(n+1)發散,所以∑|(-1)^n/(n+1)|發散;

(2)因為1/(n+1)單調遞減且lim(n—>無窮)1/(n+1)=0,所以由leibniz交錯級數判別法知∑(-1)^n/(n+1)收斂。

綜上,冪級數(-1)^n•1/n+1條件收斂。

4樓:drar_迪麗熱巴

條件收斂.

(1)因為|(-1)^n/(

n+1)|=1/(n+1),而∑1/(n+1)發散,所以∑|(-1)^n/(n+1)|發散;

(2)因為1/(n+1)單調遞減且lim(n—>無窮)1/(n+1)=0,所以由leibniz交錯級數判別法知∑(-1)^n/(n+1)收斂.

綜上,級數條件收斂.

條件收斂

一般的級數u1+u2+...+un+...

它的各項為任意級數。

如果級數σu各項的絕對值所構成的正項級數σ∣un∣收斂,則稱級數σun絕對收斂。

如果級數σun收斂,

而σ∣un∣發散,

則稱級數σun條件收斂。

判定級數∑(∞,n=1)[n(-1)^(n+1)/3ⁿ 是絕對收斂,條件收斂,還是發散? 5

5樓:玲玲幽魂

如果通項就是((-1)^n/√n)+(1/n),那麼級數發散.

原因是∑(-1)^n/√n收斂(leibniz判別法,交錯級數,絕對值單調趨於

內0),而∑1/n發散.

一個收斂級容數與一個發散級數的和是發散的.

如果原題通項是(-1)^n/√(n+1/n),那麼級數收斂.

同樣是由leibniz判別法(n+1/n單調遞增).

取絕對值後,通項1/√(n+1/n)與1/√n是等價無窮小.

根據比較判別法,∑1/√(n+1/n)發散.

因此級數是條件收斂的.

判斷級數(n=1→∞)∑(-1)^n*ln[(n+1)/n]是絕對收斂還是條件收斂?

6樓:西門樹枝洪辛

級數(n=1→∞

)∑(-1)^n*ln[(n+1)/n]=級數(n=1→∞)∑(-1)^nan

|(-1)^n*an|=ln(n+1)/n=ln(1+1/n)而lim(n→∞

)ln(1+1/n)/(1/n)=1

(羅必塔)

而∑1/n是發散的,所以∑版ln(1+1/n)是發散的所以不是權絕對收斂

而an=ln(1+1/n)>an+1=ln(1+1/(n+1))lim(n→∞)an=lim(n→∞)

ln(1+1/n)=0

所以由萊布里茨判別定理,可知該交錯級數收斂所以級數(n=1→∞)∑(-1)^n*ln[(n+1)/n]是條件收斂

7樓:完廣英鹿淑

如果通抄

項就是((-1)^n/√襲n)+(1/n),那麼級數發散.

原因是∑(-1)^n/√n收斂(leibniz判別法,交錯級數,

絕對值單調趨於

0),而∑1/n發散.

一個收斂級數與一個發散級數的和是發散的.

如果原題通項是(-1)^n/√(n+1/n),那麼級數收斂.

同樣是由leibniz判別法(n+1/n單調遞增).

取絕對值後,

通項1/√(n+1/n)與1/√n是等價無窮小.

根據比較判別法,

∑1/√(n+1/n)發散.

因此級數是條件收斂的.

∑(-1)^n*(2n-1)!!/(2n)!!,這個級數收斂嗎,判斷是絕對還是條件收斂,給思路或解答 5

8樓:匿名使用者

判斷完收斂基礎上,由數學歸納法可證得(2n-1)!!/(2n)!!>1/n,即可說明條件收斂。

9樓:匿名使用者

上下同乘(2n)!!

分子是(2n)!

分母是[ 2^n * n! ]^2

再利用組合數證明

10樓:恕

un遞減 , 再證明 un趨向於0,這個證明要用到2大於根號下1乘以3 ,分母這樣依次放縮

交錯級數1nn1n的斂散性

是 1 n n 1 n 2 這個級數不?在交錯級數中,常用萊布尼茨判別法來判斷級數的收斂性,即若交錯級數各項的絕對值單調遞減且極限是零,則該級數收斂 如果是上述級數,則有 絕對值n 1 n 2 單調遞減,且極限為零於是這個級數收斂 交錯級數 1 n 2n n 2 1 的斂散性,如果收斂,是絕對收斂還...

求極限limn 1 nn,求極限limn (1 1 n) n 詳細過程?

原式 lim exp ln n n exp lim ln n n 洛必達法則 exp 1 n exp0 1不定積分的公式 1 a dx ax c,a和c都是常數2 x a dx x a 1 a 1 c,其中a為常數且 a 1 3 1 x dx ln x c4 a x dx 1 lna a x c,其...

求冪級數n 1 n n 1 x n的在其收斂域的和函式

設其和函式為f x xf x 就變成 x n 1 n 1的冪級數,對新的冪級數逐項求導。顯然由比bai值審斂法易知其收斂域為 1,1 du n 1 n x n 1 1 n x n x n 1 n x n x 1 x 1 n x n 令f x 1 n x n 則f x x n 1 1 1 x 所以f ...