求高一數學等差等比數列

2022-12-14 20:20:13 字數 1103 閱讀 3762

1樓:

設等差數列an公差為d,則:

a3=a1+2d,a9=a1+8d

又由於a1 a3 a9成等比數列,則:

a1*a9=a3*a3,將a3,a9的值代入,得:

a1*(a1+8d)=(a1+2d)*(a1+2d),解之,得:

a1*d=d*d,由於d不為0,故a1=d。

可得:a1=d

a2=a1+d=2d

a3=a1+2d=3d

a4=a1+3d=4d

a9=a1+8d=9d

a10=a1+9d=10d

代入待求式:

(a1+a3+a9)/(a2+a4+a10)=(d+3d+9d)/(2d+4d+10d)=13/16

2樓:

設公差為d

那麼(a1+2d)(a1+2d)=a1(a1+8d)得 a1=d

那麼(a1+a3+a9)/(a2+a4+a10)=(a1+3a1+9a1)/(2a1+4a1+10a1)

=13/16

3樓:匿名使用者

a1=a1,a3=a1+2d,a9=a1+8da1*a9=a3^2

a1*a1+8d=(a1+2d)^2

a1^2+8a1*d=a1^2+4d^2+4a1*da1=d

(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=13/16

4樓:匿名使用者

根據題意可知(a+x)/(a+3x)=(a+3x)/(a+9x)

由於公差x不為0,可得該等差數列為x,2x,3x.......9x,10x.....

則(a1+a3+a9)/(a2+a4+a10)的值是 13/16.

5樓:匿名使用者

a1 a3 a9成等比數列

a1=a a3=a+2d a9=a+8d (d為公差)a1*a9=(a3)^2 即

a*(a+8d)=(a+2d)^2

又等差數列an的公差不為0,則d=4a

(a1+a3+a9)/(a2+a4+a10)=(3a+10d)/(3a+13d)=43/55

如何學好等差等比數列這塊,人教版裡等差等比數列是什麼時候學的???

a n 2 2 3a n 1 1 3an可以得到 a3 2 3a2 1 3a1 a4 2 3a3 1 3a2 a5 2 3a4 1 3a3 兩邊同時相加即 a3 a n 2 2 3a n 1 an a3 a2 1 3a1即a n 2 1 3a n 1 7 3即 a n 2 7 4 1 3 a n 1...

高一數學數列問題等差數列和等比數列複合

1.c n a n b n 2n x n 沒什麼多說的,代入即可 2.s n c n 2 x n 1 x n n x n 1 x n 1 x x 1 2 方法1 錯項相加法,高中常用,但太麻煩,就好比數學歸納法那樣 方法2 大學才學的,逐項積分法,也太麻煩,還是用方法1吧 方法3 待定係數法,更麻煩...

數學等差數列an和等比數列bn的關係

等差數列,等比數列的通項公式分別為an a1 n 1 d,an a1 q n 1 二 基本公式 9 一般數列的通項an與前n項和sn的關係 an 10 等差數列的通項公式 an a1 n 1 d an ak n k d 其中a1為首項 ak為已知的第k項 當d 0時,an是關於n的一次式 當d 0時...