1樓:風過留痕
極限是不存在的,考慮數列x=pi/2 +2*n*pi (n->無窮)
這時候極限為0,同樣可以找出極限為1的數列
所以極限應該是不存在的
函式極限不存在有哪幾種情況? 10
2樓:soumns馬
極限不存在有三種情況:
1.極限為無窮,很好理解,明顯與極限存在定義相違。
2.左右極限不相等,例如分段函式。
3.沒有確定的函式值,例如lim(sinx)從0到無窮。
極限存在與否條件:
1、結果若是無窮小,無窮小就用0代入,0也是極限。
2、若是分子的極限是無窮小,分母的極限不是無窮小,答案就是0,整體的極限存在。
3、如果分子的極限不是無窮小,而分母的極限是無窮小,答案不是正無窮大,就是負無窮大,整體的極限不存在。
4、若分子分母各自的極限都是無窮小,那就必須用羅畢達方法確定最後的結果。
擴充套件資料
極限思想
極限思想方法,是數學分析乃至全部高等數學必不可少的一種重要方法,也是數學分析在初等數學的基礎上有承前啟後連貫性的、進一步的思維的發展。數學分析之所以能解決許多初等數學無法解決的問題,正是由於其採用了極限的無限逼近的思想方法。
人們通過考察某些函式的一連串數不清的越來越精密的近似值的趨向,趨勢,可以科學地把那個量的極準確值確定下來,這需要運用極限的概念和以上的極限思想方法。要相信, 用極限的思想方法是有科學性的,因為可以通過極限的函式計算方法得到極為準確的結論。
3樓:匿名使用者
極限不存在大致可以分為三種情況:
1.極限為無窮,很好理解,明顯與極限存在定義相違;
2.左右極限不相等,例如分段函式;
3.沒有確定的函式值,例如lim(sinx)從0到無窮,但要注意,sinx是有界的。。。
我這樣理解的,希望對你有幫助。。。
4樓:找罵成全你
不能證明存在 就可以反證不存在了簡單啊
5樓:匿名使用者
柯西極限存在準則又叫柯西審斂原理,給出了數列收斂的充分必要條件。
數列收斂的充分必要條件是:對於任意給定的正數ε,存在著這樣的正整數n,使得當m>n,n>n時就有
|xn-xm|<ε
這個準則的幾何意義表示,數列收斂的充分必要條件是:對於任意給定的正數ε,在數軸上一切具有足夠大號碼的點xn中,任意兩點間的距離小於ε .
充分性:cauchy列(基本列)收斂
證明:1、首先證明cauchy列有界
取e=1,根據cauchy列定義,取自然數n,當n>n時有c
|a(n)-a(n)|0,都存在n,使得m、n>n時有
|a(m)-a(n)|n,使得
|aj(k)-a|=k>n,所以凡是n>n時,我們有
|a(n)-a|=|a(n)-aj(k)|+|aj(k)-a| 這樣就證明了cauchy列收斂於a. 即得結果:cauchy列收斂 注意:1、e是表示按照讀音epslon寫的那個希臘文。 2、上面a(n)表達中,n表示下標;aj(n)中,j(n)表示a的下標,n表示j的小標。 必要性書上有 證明一個函式的極限不存在 6樓: 多元函式的極限要證明存在是不容易的,要證明不存在則是非常容易的,只要選擇一種方式使極限不存在或選擇兩種方式使極限不相等,就可以得到極限不存在的結論了。 lim0,y-->0>[√(xy+1)-1]/(x+y)=lim0,y-->0>(xy)/[2(x+y)]這步是等價無窮小代換,是沒有問題的。 沿y=0,lim0,y-->0>(xy)/[2(x+y)]=lim0>0/(2x)=0 沿y=-x+x^2,lim0,y-->0>(xy)/[2(x+y)]==lim0>(-x^2+x^3)/[2(x^2)]=-1/2兩種方式極限不相等,所以原來的極限不存在。 令y x 0代入,極限 1 令y 0,x 0代入,極限 0 故極限不存在 證明二元函式的極限不存在 多元抄函式的極限要證明存在是襲不容易的,要證明不存在則是非常容易的,只要選擇一種方式使極限不存在或選擇兩種方式使極限不相等,就可以得到極限不存在的結論了。lim0,y 0 xy 1 1 x y lim... 令y x,代入求極限然後再令y 1 2x,代入求極限兩次求的極限值不同即可證明 取y kx,則得到與k相關的極限k 1 k k 2 這與極限是 以任意方式與路徑無關的常數 定義相悖。證明二元函式的極限不存在 多元抄函式的極限要證明存在是襲不容易的,要證明不存在則是非常容易的,只要選擇一種方式使極限不... 當x趨近於1的時候,函式變成了1除以0,因為零不能做除數,所以極限不存在。當自變數x趨近於某一個數時,函式的值也會無 限 趨近於某一個常數,這就是函式的極限。只有無窮數列才有極限的概念,有窮數列是沒有極限的。無窮常數列的極限就是這個常數本身,這是一個補充規定,和極限的定義是不符合的,因為極限的定義是...證明一多元函式極限不存在,證明二元函式的極限不存在
多元函式證明極限不存在,證明二元函式的極限不存在
為什麼極限不存在?極限不存在的幾種情況?