1樓:g弦上的華彩
設f(x)=x^3-(3yz)x+y^3+z^3其中y^3+z^3=(y+z)(y^2-yz+z^2),即f(x)=x^3-(3yz)x+(y+z)(y^2-yz+z^2)
嘗試得(x+(y+z))為原式的因式,因為f(-(y+z))=-(y+z)^3+(3yz)(y+z)+y^3+z^3=0
於是用大除法計算(x^3-(3yz)x+y^3+z^3)/(x+(y+z)),得到另一因式為x^2-(y+z)x+y^2+z^2-yz
最後整理得到(x+y+z)(x²+y²+z²-xy-xz-yz)
2樓:匿名使用者
x^3+y^3+z^3-3xyz
=x³+3x²y+3xy²+y³ +z³ -3xyz-3xy²-3x²y
=(x+y)³+z³ -3xy(x+y+z)=(x+y+z)[(x+y)²-(x+y)z+z²]-3xy(x+y+z)
=(x+y+z)(x²+y²+z²-xy-xz-yz)
x^3+y^3+z^3-3xyz因式分解
3樓:網際超人
= (x^3+3yx^2+3xy^2+y^3)+z^3-3xyz-3yx^2-3xy^2
= (x+y)^3+z^3-3xy(x+y+z)= (x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)
= (x+y+z)[(x^2+2xy+y^2-xz-yz+z^2)-2xy]
= (x+y+z)(x^2+y^2+z^2-xy-yz-zx)不懂還可問,滿意請及時採納!o(∩_∩)o
x^3+y^3+z^3-3xyz因式分解
4樓:匿名使用者
x³+y³+z³-3xyz
=(x+y+z)(x²+y²+z²-xy-xz-yz)
(這用到的是公式a³+b³+c³-3abc=(a²+b²+c²-ab-ac-bc))
5樓:虎慈建萍韻
^^^x^3+y^3+z^3-3xyz
=(x^3+3yx^2+3xy^2+y^3)+z^3-3xyz-3yx^2-3xy^2
=(x+y)^3+z^3-3xy(x+y+z)=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)
=(x+y+z)[(x^2+2xy+y^2-xz-yz+z^2)-2xy]
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
(x^3+y^3+z^3-3xyz)怎麼因式分解?
6樓:匿名使用者
x³+y³+z³-3xyz
=x³+3x²y+3xy²+y³+z³-3x²y-3xy²-3xyz=(x+y)³+z³-3xy(x+y+z)=(x+y+z)(x²+2xy+y²-xz-yz-3xy)=(x+y+z)(x²+y²+z²-xy-yz-xz)
因式分解(x+y+z)^3-x^3-y^3-z^3
7樓:小賤
^參考下面
(x+y+z)^3-x^3-y^3-z^3=3yx^2+3xy^2+3xz^2+3yz^2+3zx^2+3zy^2+6xyz
=3xy(x+y)+3z^2(x+y)+3z(x^2+y^2+2xy)
=3xy(x+y)+3z^2(x+y)+3z(x+y)^2=3(x+y)[xy+z^2+z(x+y)]=3(x+y)[x(y+z)+z(y+z)]=3(x+y)(x+z)(y+z)、
、好評,,o(∩_∩)o謝謝
分解因式3x 5 10x 4 8x 3 3x 2 10x
3x 5 10x 4 8x 3 3x 2 10x 8 3x 5 3x 2 10x 4 10x 8x 3 8 3x 2 x 3 1 10x x 3 1 8 x 3 1 x 3 1 3x 2 10x 8 x 1 x 2 x 1 x 4 3x 2 解 3x 5 10x 4 8x 3 3x 2 10x 8 ...
利用二重積分計算體積。x y z 3,x 2 y 2 1,z 0希望能給出詳細的解答過程。越詳細越好,謝謝了
v 3 x y dxdy 其中d x 2 y 2 1 設x rcosu,y rsinu,則dxdy rdrdu,v 0,2 0,1 3 rcosu rsinu rdr 0,2 3r 2 2 cosu sinu r 3 3 0,1 0,2 3 2 1 3 cosu sinu du 3 用極座標 積函式...
x3y3怎麼因式分解x3次方y3次方怎麼因式分解
x3 y3因式分解為 x y x 2 y 2 xy 解 x 3 y 3 x 3 x 2 y y 3 x 2 y x 2 x y y y 2 x 2 x 2 x y y y x y x x y x 2 y y x x y x 2 y 2 xy 即x3 y3因式分解為 x y x 2 y 2 xy 擴充...