1樓:匿名使用者
定比分點公式(向量p1p=λ•向量pp2)
設p1、p2是直線上的兩點,p是l上不同於p1、p2的任意一點。則存在一個實數 λ,使 向量p1p=λ•向量pp2,λ叫做點p分有向線段p1p2所成的比。
若p1(x1,y1),p2(x2,y2),p(x,y),則有
op=(op1+λop2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點座標公式)
我們把上面的式子叫做有向線段p1p2的定比分點公式
三點共線定理
若oc=λoa +μob ,且λ+μ=1 ,則a、b、c三點共線
三角形重心判斷式
在△abc中,若ga +gb +gc=o,則g為△abc的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行於任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a•b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直於任何向量.
設a=(x,y),b=(x',y')。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
ab+bc=ac。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
ab-ac=cb. 即「共同起點,指向被減」
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)•b=λ(a•b)=(a•λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。
向量的數量積的座標表示:a•b=x•x'+y•y'。
向量的數量積的運算律
a•b=b•a(交換律);
(λa)•b=λ(a•b)(關於數乘法的結合律);
(a+b)•c=a•c+b•c(分配律);
向量的數量積的性質
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:
∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,「向量ab/向量cd」是沒有意義的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 當且僅當a、b同向時,左邊取等號;
② 當且僅當a、b反向時,右邊取等號。
向量的加減乘除怎麼算
2樓:是你找到了我
1、向量的加法:滿足平行四邊形法則和三角形法則,即
2、向量的減法:如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0oa-ob=ba.
即「共同起點,指向被減」,例如:a=(x1,y1),b=(x2,y2) ,則a-b=(x1-x2,y1-y2)。
3、向量的乘法:實數λ和向量a的叉乘乘積是一個向量,記作λa,且|λa|=|λ|*|a|。當λ>0時,λa的方向與a的方向相同;當λ<0時,λa的方向與a的方向相反;當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
4、向量的除法:a÷k=|a|/k*a的單位向量。即結果為原向量的長度縮小k倍後的向量,方向不變。
擴充套件資料:
一、向量加法的運算律:
1、交換律:a+b=b+a;
2、結合律:(a+b)+c=a+(b+c)。
3、加減變換律:a+(-b)=a-b
4、向量的加減乘(向量沒有除法)運算滿足實數加減乘運演算法則。
二、向量的數乘規律:
1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。
2、向量的數量積不滿足消去律,即:由a·b=a·c(a≠0),推不出b=c。
3樓:demon陌
向量加法,按三角形法則求和。即a+b結果為以a,b為兩邊的三角形的第三邊。如果以座標表示向量,則向量a(x1,y1)與向量b(x2,y2)相加的和是(x1+x2,y1+y2)所表示的向量。
向量減法,可以轉化為向量加法。即a-b=a+(-b),結果是以a和-b為兩邊的三角形的第三邊。向量a(x1,y1)與向量b(x2,y2)相減的結果是(x1-x2,y1-y2)所表示的向量。
向量乘法,a*b=|a|*|b|*cos,即a,b兩向量的長度的積再乘以它們夾角的餘弦,結果是一個數量而不再是一個向量。幾何意義相當於a向量長度與b向量在a向量上的投影長度相乘。
向量除法,分為幾種情況,(a,b為向量,k為常數)
1、 a÷k=|a|/k*a的單位向量。即結果為原向量的長度縮小k倍後的向量,方向不變。
2、k÷a=b,其中向量b的長度為k÷(|a|cos),與a的夾角為,結果有無數種,所以這樣的除法也沒什麼意義。
4樓:abc高分高能
向量加減法的運演算法則
平面向量加減法公式及乘除法公式
5樓:匿名使用者
加法1、三角形法
則 2、平行四邊形法則
設a向量=(x1,y1),b向量=(x2,y2),則:a向量+b向量=(x1+x2,y1+y2)
減法三角形法則:
設a向量=(x1+y1),b向量=(x2,y2),則:a向量+b向量=(x1-x2,y1-y2)
a向量*b向量=b向量*a向量
向量1、向量的加法:
ab+bc=ac
設a=(x,y) b=(x',y')
則a+b=(x+x',y+y')
向量的加法滿足平行四邊形法則和三角形法則。
向量加法的性質:
交換律:
a+b=b+a
結合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的減法
ab-ac=cb
a-b=(x-x',y-y')
若a//b
則a=eb
則xy`-x`y=0
若a垂直b
則ab=0
則xx`+yy`=0
3、向量的乘法
設a=(x,x') b=(y,y')
a·b(點積)=x·x'+y·y'
6樓:匿名使用者
公式=/oa/./ob/.cosa a為兩向量的夾角
已知三角形三邊可以求任意一個角————用餘弦定理
結果是2乘1乘四分之一 =二分之一
7樓:匿名使用者
我來幫他解答
滿意回答2009-06-09 18:35公式=/oa/./ob/.cosa a為兩向量的夾角
已知三角形三邊可以求任意一個角————用餘弦定理結果是2乘1乘四分之一 =二分之一
高中數學平面向量和空間向量怎麼學
1空間抄 直角座標系2向量平行,垂直襲的那些結bai論3平面法向量1不多說du了2若向量a zhix,y,z 向量daob x1,y1,z1 如果向量a 向量b,那麼x x1 y y1 z z1 0 向量a 向量b x x1 y y1 z z1 如果向量a 向量b那麼x x1 y y1 z z1 r...
怎麼學好高中數學向量的有關問題,高中數學有什麼關於學習向量的好方法
把相關公式單獨寫出來,要寫出這些公式是用來計算什麼的,就那麼一些,先記下來,第二天再複習,第三天再複習 然後看題目,只看最後是讓計算什麼的,就對對應相關公式,然後要向別人請教計算步驟。我高中數學在學校排第一很多年了,你數學不好,就這樣可以快人快些幫到你,做題目多了不明白的再看細節知識,只能這樣了。要...
高中數學函式概念高中數學集合的概念
證因已知 f n 1 f n f n 1,所以f n 1 f n f n 2 f n 1 f n 1 0,這說明f n 隨n遞增 而遞增或相等,但已知f 1 2,即f n 最小值為2,所以應為 f n 1 f n f n 2 f n 1 f n 1 0,即f n 隨n遞增而遞增.以下用 數學歸納法來...