1樓:友の誼
解決與絕對值有關的問題(如解絕對值不等式,解絕對值方程,研究含有絕對值符號的函式等等),其關鍵往往在於去掉絕對值的符號。而去掉絕對值符號的基本方法有二:
其一為平方,其二為討論。所謂平方,比如,|x|=3,可化為x^2=9,絕對值符號沒有了!
所謂討論,即x≥0時,|x|=x ;x<0時,|x|=-x,絕對值符號也沒有了!以下,具體說說絕對值不等式的解法。首先說「平方法」。
不等式兩邊可不可以同時平方呢?一般來說,有點問題。比如5>3,平方後,5^2>3^2,但1>-2,平方後,1^2<(-2)^2。
***事實上,本質原因在於函式y=x^2在r上不單調。但我們知道,y=x^2在r+上是單調遞增的,因此不等式兩邊都是非負時,同時平方,不等號的方向不變,這是可以的。這裡說到的***單調性的問題,是高一數學的重點內容,現在不明白可以跳過,到時候可一定要用心聽!
有初中數學的基礎,也應該明白,對兩個非負數來說,大的那個數,它的平方也相應會大一些;反過來,平方大一些的數,這個數本來也會大一些。比如|2x-1|≥1,兩邊同時平方,可得(2x-1)^2≥1,整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1。
2樓:匿名使用者
絕對值不等式目錄
簡介性質
幾何意義
絕對值重要不等式
絕對值不等式解法 編輯本段簡介
在不等式應用中,經常涉及重量、面積、體積等,也涉及某些數學物件(如實數、向量)的大小或絕對值。它們都是通過非負數來度量的。 公式:
|a|-|b|≤|a+b|≤|a|+|b|編輯本段性質
|a|表示數軸上的點a與原點的距離叫做數a的絕對值。 兩個重要性質:1.
|ab|=|a||b|;|a/b|=|a|/|b| 2.|a|<|b| 可逆 a²0), a,(a=0), ﹣a,(a<0),} 因此,有 ﹣|a|≤a≤|a| ......① ﹣|b|≤b≤|b| ......
② 同樣地 ①,②相加得 ﹣﹙|a|+|b|)≤a+b≤|a|+|b| 即 |a+b|≤|a|+|b| ......③ 易得,當且僅當ab≥0時,③式等號成立。由③可得 |a|=|(a+b)-b|≤|a+b|+|-b|......
④ 即 |a|-|b|≤|a+b| ......⑤ 對④式,由上面知,當且僅當(a+b)(-b)≥0時等號成立,所以⑤式等號成立的充要條件是b(a+b)≤0。 綜合③,⑤我們得到有關絕對值(absolute value)的重要不等式 |a|-|b|≤|a+b|≤|a|+|b|編輯本段絕對值不等式解法
解決與絕對值有關的問題(如解絕對值不等式,解絕對值方程,研究含有絕對值符號的函式等等),其關鍵往往在於去掉絕對值的符號。而去掉絕對值符號的基本方法有二:其一為平方,其二為討論。
所謂平方,比如,|x|=3,可化為x^2=9,絕對值符號沒有了!所謂討論,即x≥0時,|x|=x ;x<0時,|x|=-x,絕對值符號也沒有了!以下,具體說說絕對值不等式的解法。
首先說「平方法」。不等式兩邊可不可以同時平方呢?一般來說,有點問題。
比如5>3,平方後,5^2>3^2,但1>-2,平方後,1^2<(-2)^2。 ***事實上,本質原因在於函式y=x^2在r上不單調。但我們知道,y=x^2在r+上是單調遞增的,因此不等式兩邊都是非負時,同時平方,不等號的方向不變,這是可以的。
這裡說到的***單調性的問題,是高一數學的重點內容,現在不明白可以跳過,到時候可一定要用心聽! 有初中數學的基礎,也應該明白,對兩個非負數來說,大的那個數,它的平方也相應會大一些;反過來,平方大一些的數,這個數本來也會大一些。比如|2x-1|≥1,兩邊同時平方,可得(2x-1)^2≥1,整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1。
3樓:匿名使用者
主要判斷裡面的是否大於零
大於零的話就不用變,直接去掉外面的絕對值符號小於零的話去掉絕對值符號後要在前面加個-號為零的話也是本身
比如|1+2|=1+2
|1-2|=-(1-2)
希望可以幫助到你哦o(∩_∩)o~
含絕對值的不等式怎樣解?
4樓:餜拫jj鎝炰繆鏉
絕對值不等式的常見形式及解法:
絕對值不等式解法的基本思路專是:去掉絕對值符號,把它轉屬化為一般的不等式求解。
轉化的方法一般有:(1)絕對值定義法;(2)平方法;(3)零點區域法。常見的形式有以下幾種。
形如不等式:|x|0),利用絕對值的定義得不等式的解集為:-a形如不等式:|x|>=a(a>0),它的解集為:x<=-a或x>=a。
形如不等式|ax+b|0),它的解法是:先化為不等式組:-c形如 |ax+b|>c(c>0),它的解法是:
先化為不等式組:ax+b>c或ax+b<-c,再利用不等式的性質求出原不等式的解集。
5樓:形影網遊卡
初中數學中考真題,含有絕對值的不等式方程,解法很巧妙
解絕對值不等式時,有幾種常見的方法
6樓:喵喵喵
一、 絕對值定義法
對於一些簡單的,一側為常數的含不等式絕對值,直接用絕對值定義即可,
1、如|x| < a在數軸上表示出來。利用數軸可將解集表示為−a< x < a
2、|x| ≥ a同理可在數軸上表示出來,因此可得到解集為x≥ a或x≤ a
3、|ax +b| ≥ c型,利用絕對值性質化為不等式組−c ≤ ax + b ≤ c,再解不等式組。
二、平方法
對於不等式兩邊都是絕對值時,可將不等式兩邊同時平方。
解不等式 |x+ 3| > |x− 1|將等式兩邊同時平方為(x + 3)2 > (x − 1)2得到x2 + 6x + 9 > x2 − 2x + 1之後解不等式即可,解得x > −1
三、零點分段法
對於不等式中含有有兩個及以上絕對值,且含有常數項時,一般使用零點分段法。例 解不等式|x + 1| + |x − 3| > 5
在數軸上可以看出,數軸可以分成x < −1,−1 ≤ x < 3, x ≥ 3三個區間,由此進行分類討論。
當x < −1時,因為x + 1 < 0, x − 3 < 0所以不等式化為 −x− 1 −x + 3 > 5解得x < −322.當−1 ≤x < 3時, 因為x + 1 > 0,x− 3 < 0所以不等式化為x + 1 − x + 3 > 5無解。
當 x ≥ 3時 因為x + 1 > 0 ,x − 3 > 0所以不等式化為x + 1 + x− 3 > 5解得x >72綜上所述,不等式的解為x < −32或x >72。
擴充套件資料
1、實數的絕對值的概念
(1)|a|的幾何意義
|a|表示數軸上實數a對應的點與原點之間的距離.
(2)兩個重要性質
①(ⅰ)|ab|=|a||b|
②|a|<|b|⇔a2(3)|x-a|的幾何意義:數軸上實數x對應的點與實數a對應的點之間的距離,或數軸上表示x-a的點到原點的距離.
(4)|x+a|的幾何意義:數軸上實數x對應的點與實數-a對應的點之間的距離,或數軸上表示x+a的點到原點的距離。
2、絕對值不等式定理
(1)定理:對任意實數a和b,有|a+b|≤|a|+|b|,當且僅當ab≥0時,等號成立.
(2)定理的另一種形式:對任意實數a和b,有|a-b|≤|a|+|b|,當且僅當ab≤0時,等號成立.
絕對值不等式定理的完整形式:|a|-|b|≤|a±b|≤|a|+|b|.
其中,(1)|a+b|=|a|-|b|成立的條件是ab≤0,且|a|≥|b|;
(2)|a+b|=|a|+|b|成立的條件是ab≥0;
(3)|a-b|=|a|-|b|成立的條件是ab≥0,且|a|≥|b|;
(4)|a-b|=|a|+|b|成立的條件是ab≤0.
7樓:科學普及交流
絕對值不等式解法的基本思路是:去掉絕對值符號,把它轉化為一般的不等式求解,轉化的方法一般有:(1)絕對值定義法;(2)平方法;(3)零點區域法。
8樓:
兩種手段:一,分類討論;二,應用絕對值不等式性質。
關於絕對值不等式的解法
9樓:加菲21日
解決與絕對值有關的問題(如解絕對值不等式,解絕對值方程,研究含有絕對值符號的函式等等),其關鍵往往在於去掉絕對值的符號。
而去掉絕對值符號的基本方法有二:其一為平方,其二為討論。
所謂平方,比如,|x|=3,可化為x^2=9,絕對值符號沒有了!
所謂討論,即x≥0時,|x|=x ;x<0時,|x|=-x,絕對值符號也沒有了!
以下,具體說說絕對值不等式的解法。
首先說「平方法」。
不等式兩邊可不可以同時平方呢?一般來說,有點問題。比如5>3,平方後,5^2>3^2,但1>-2,平方後,1^2<(-2)^2。
***事實上,本質原因在於函式y=x^2在r上不單調。
但我們知道,y=x^2在r+上是單調遞增的,因此不等式兩邊都是非負時,同時平方,不等號的方向不變,這是可以的。
這裡說到的***單調性的問題,是高一數學的重點內容,現在不明白可以跳過,到時候可一定要用心聽!
有初中數學的基礎,也應該明白,對兩個非負數來說,大的那個數,它的平方也相應會大一些;反過來,平方大一些的數,這個數本來也會大一些。
比如|2x-1|≥1,兩邊同時平方,可得(2x-1)^2≥1,
整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1
*****===注意*****===
這裡用到了「一元二次不等式的解法」,現在的初中肯定還是要學一元二次方程的解法的,學不學一元二次不等式的解法,我就不清楚了。如果沒學,那「平方法」先放一放,跳到「討論法」吧——見華麗的分割線!
*****===end*****===
一般地,|f(x)|≥a(a>0),那麼f(x)^2)≥a^2,即f(x)^2)-a^2≥0
因式分解得[f(x)+a}[f(x)-a])≥0,因此f(x))≤-a或f(x)≥a (*)
(ps.若a≤0,則|f(x)|≥a的解集為r。想一想,沒問題吧:))
同理,由|f(x)|≤a(a>0),可得-a≤f(x)≤a。 (**)
熟練了以後,結論(*)、(**)都可以直接使用。
比如|2x-1|<5,由結論(**)(當然,這裡沒有等號,將等號去掉就可以了)可得:
-5<2x-1<5,即-27-8x
你看,平方一次,絕對值符號少了一個,但還有一個,怎麼辦?當然再平方一次!但問題是,這次還能平方嗎?
不可以了,因為7-8x的符號未必是正啊!那怎麼辦?討論!
若7-8x<0,即x>7/8,則原不等式顯然成立!(為什麼?) ①
若7-8x≥0,即x≤7/8,則原不等式等價於4(x+1)^2>(7-8x)^2
整理得:4x^2-8x+3<0,即(2x-1)(2x-3)<0,因此1/21/2}
問題解決了!
********************我是華麗的分割線********************
回到問題的一開始,對於|x-3|-|x+1|<1這樣的不等式,我們更多的時候,可以從一開始進行討論。
|x-3|中的絕對值符號能否去掉?去掉以後,式子會發生怎樣的變化?關鍵在於x>3還是x<3,
因此x與3的大小關係是一個關鍵。
同樣的道理,考察|x+1|,可以知道x與-1的大小關係也是一個關鍵。
於是,在兩個關鍵處,進行如下的討論:
(1)若x<-1,則x+1<0,x-3<0,
此時,原不等式可化為-(x-3)+(x+1)<1,即4<1,荒謬,捨去!
(2)若-1≤x<3,則x+1≥0,x-3<0,
此時,原不等式可化為-(x-3)-(x+1)<1,即-2x+2<1,解得x>1/2
再考慮到-1≤x<3,因此1/20,x-3≥0,
此時,原不等式可化為(x-3)-(x+1)<1,即-4<1,顯然成立!因此x≥3
綜合(2)(3)的結果可知,原不等式的解集為
那麼對於第一個例子,1≤|2x-1|<5,怎麼用「討論法」,應該沒問題了吧!
(1)若2x-1≥0,即x≥1/2,則原不等式可化為1≤|2x-1|<5,……
(2)若2x-1<0,即x<1/2,則原不等式可化為1≤1-2x<5,……
以下略。
順便說一下,x=1/2時,2x-1=0,因此數學上,把x=1/2叫做式「2x-1」的零點。我們以上
使用的「討論法」,更具體的名稱是「零點分段討論法」。
但就其蘊含的數學思想來說,就是「分類討論」,這可是高中數學的基本思想方法,一定要掌握!
以上,從絕對值的代數意義出發,即「數」的角度,給出瞭解絕對值不等式的兩種常規思路,希望能給你有所啟發。
考慮到絕對值還有著極為有趣的幾何意義,因此從「形」的角度出發,也可以得到一些有意思的解法。
這事實上就涉及到高中數學中另一種極為重要的思想方法,即「數形結合」。
篇幅的關係,就不贅述了。(其實,我也累了……)
比如這道初中競賽題:求|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值。有興趣可以試一試!
再說明一下,http://zhidao.baidu.
這個帖子我也看到了,準備回答的時候(寫了一些,但沒有你現在看到的這個那麼長篇大論),已經封貼了。
還想著白寫了呢,正好你又發問,也算是有緣吧……
含兩個絕對值不等式的解法,含有絕對值的不等式怎麼解
解這類不等式當然要先去絕對值符號,依據是零點分割槽法,即令絕對值符號裡邊的式子等於0,解出x的值,然後分成幾個區域。如本例的零點是2和 3,分成3個區域 x小於等於 3,3 x 2,x大於等於2。1 當x小於等於 3時,原不等式即 x 2 x 3 5 a,要使不等式恆成立,只需a 5即可。2 當 3...
關於含絕對值的不等式的問題
直接按你老師的做就可以了。不用討論兩者的大小,那和絕對值符號及不等式符號都沒關係。不等式就一個原則 左右兩邊乘以負數,不等式方向改變。2 當x2 8 0時,x2 5x 10 8 x2或x2 5x 108 x2或x2 5x 10這是你的類比思維出了問題。只要想一想絕對值大於0這個規則,你的討論就是無中...
絕對值不等式的取等條件是什麼,絕對值不等式要滿足什麼條件才能取到最大值?
一類 a a取 的條件是a 0 a a取 的條件是a 0 二類 三角形不等式 基本式 a b a b 取 的條件是ab 0其它 a b a b 取 的條件是ab 0 變形為 a b a b 再用基本式得到 a b a b 取 的條件是 a b b 0 變形為 a b b a b b 再用基本式得到 ...