矩陣I是什麼矩陣

2021-03-07 01:02:47 字數 2069 閱讀 9731

1樓:是你找到了我

矩陣i是單位矩陣。用i或e表示。

在矩陣的乘法中,有一種矩陣起著特殊的作用,如同數的乘法中的1,這種矩陣被稱為單位矩陣。它是個方陣,從左上角到右下角的對角線(稱為主對角線)上的元素均為1。除此以外全都為0。

根據單位矩陣的特點,任何矩陣與單位矩陣相乘都等於本身,而且單位矩陣因此獨特性在高等數學中也有廣泛應用。

2樓:火焰閃

由 m × n 個數aij排成的m行n列的數表稱為m行n列的矩陣,簡稱m × n矩陣。

在數學中,矩陣(matrix)是一個按照長方陣列排列的複數或實數集合,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。

矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;電腦科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。

將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考矩陣理論。

在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。

3樓:天上的心圖

單位矩陣簡記為i(或e)

請問線性代數裡矩陣i表示什麼?

4樓:匿名使用者

單位矩陣,就是對角線元素全為1,其他元素為0的矩陣。

線性代數中大寫字母i代表什麼?

5樓:匿名使用者

i代表單位矩陣。不同課本也用e表示單位矩陣。

線性代數(linear algebra)涉及的運算主要是稱為加減和數乘的線性運算,這些線性運算須滿足一定的性質進而構成線性空間.線性代數需要解決的第一個問題就是求解**於實際應用問題的線性方程組.

性代數的研究物件是線性空間,包括其上的線性變換.它與高等代數、近世代數的研究物件略有所不同.

6樓:暴走少女

任意指一個區間時,一般以大寫字母 i 記之。

通用的區間記號中,圓括號表示「排除」,方括號表示「包括」。例如,區間(10, 20)表示所有在10和20之間的實數,但不包括10或20。另一方面,[10, 20]表示所有在10和20之間的實數,以及10和20。

有的國家是用逗號來代表小數點,為免產生混淆,分隔兩數的逗號要用分號來代替。例如[1, 2.3]就要寫成[1; 2,3]。

否則,若只把小數點寫成逗號,之前的例子就會變成 [1,2,3] 了。這時就不能知道究竟是 1.2 與 3 之間,還是 1 與 2.

3 之間的區間了。

擴充套件資料:

一、重要定理

1、每一個線性空間都有一個基。

2、對一個 n 行 n 列的非零矩陣 a,如果存在一個矩陣 b 使 ab = ba =e(e是單位矩陣),則 a 為非奇異矩陣(或稱可逆矩陣),b為a的逆陣。

3、矩陣非奇異(可逆)當且僅當它的行列式不為零。

4、矩陣非奇異當且僅當它代表的線性變換是個自同構。

5、矩陣半正定當且僅當它的每個特徵值大於或等於零。

6、矩陣正定當且僅當它的每個特徵值都大於零。

7、解線性方程組的克拉默法則。

8、判斷線性方程組有無非零實根的增廣矩陣和係數矩陣的關係。

二、學術地位

線性代數在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中佔居首要地位。在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分。

線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧是非常有用的。

隨著科學的發展,我們不僅要研究單個變數之間的關係,還要進一步研究多個變數之間的關係,各種實際問題在大多數情況下可以線性化。

而由於計算機的發展,線性化了的問題又可以被計算出來,線性代數正是解決這些問題的有力工具。線性代數的計算方法也是計算數學裡一個很重要的內容。

hermite矩陣是什麼,矩陣的子式是什麼?

hermite矩陣,指的是自共軛矩陣。矩陣中每一個第i行第j列的元素都與第j行第i列的元素的共軛相等。hermite矩陣又稱共軛矩陣陣。hermite陣中每一個第i 行第j列的元素都與第j 行第i列的元素的共軛相等。hermite矩陣的用途主要是在在工程專業方面的應用,可以更加方便地描述工程資訊。厄...

矩陣形式是什麼?其中每個矩陣的含義是什麼

在數學中,矩陣 matrix 是一個按照長方陣列排列的複數或實數集合 1 最早來自於內方程組的係數及常數容所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。2 在物理學中,矩陣於電路學 力學 光學和量子物理中都有應用 電腦科學中,...

矩陣分解的介紹,矩陣分解的由來是什麼?

矩陣分解 de position,factorization 是將矩陣拆解為數個矩陣的乘積,可分為三角分解 滿秩分解 qr分解 jordan分解和svd 奇異值 分解等,常見的有三種 1 三角分解法 triangular factorization 2 qr 分解法 qr factorization...