點乘與叉乘有什麼區別,向量的點乘和叉乘有什麼區別

2021-03-21 23:53:17 字數 5797 閱讀 2448

1樓:匿名使用者

一、符號不同

點乘:點乘的符號用「 · 」表示。

叉乘:叉乘的符號用「 × 」表示。

二、結果不同

點乘:點乘得到的結果是一個數值。

叉乘:叉乘得到的結果是一個向量。

三、計算過程不同

點乘:點乘是兩個向量的模的乘積再乘上兩個向量夾角的餘弦值。

叉乘:叉乘是兩個向量的模的乘積再乘上這兩個向量夾角的正弦值。

擴充套件資料叉乘在物理領域的應用:

物理裡我們遇到的有關兩個向量叉乘的物理量有磁場裡的洛倫茲力。洛倫茲力是運動的帶電粒子在磁場中受到的力,這個力等於粒子速率v和磁感應強度b叉乘的結果再乘上粒子帶電量q。

通常是通過叉乘的右手法則來判斷這個洛倫茲力的方向。一般都是用左手定則來判斷洛倫茲力和安培力的方向的。

2樓:匿名使用者

向量的乘法有兩種,分別成為內積和外積.

內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin

3樓:杞霞野午

點乘是向量的內積

叉乘是向量的外積

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。

叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。

擴充套件資料:

向量的點乘:a*b

公式:a*b

=|a|

*|b|

*cosθ

點乘又叫向量的內積、數量積,是一個向量和它在另一個向量上的投影的長度的乘積;是標量。

點乘反映著兩個向量的「相似度」,兩個向量越「相似」,它們的點乘越大。

向量的叉乘:a∧b

a∧b=

|a|*

|b|*

sinθ

向量積被定義為:

模長:(在這裡θ表示兩向量之間的夾角(共起點的前提下)(0°≤θ≤180°),它位於這兩個向量所定義的平面上。)方向:

a向量與b向量的向量積的方向與這兩個向量所在平面垂直,且遵守右手定則。(一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。

c=a∧b)參考資料:點積—搜狗百科,向量積—搜狗百科

4樓:遊萱斐水

有,點乘的結果是一代數,而叉乘的結果是一向量.

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i

jk||a1b1

c1||a2

b2c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

5樓:匿名使用者

a.b=|a||b|cos結果是一個標量

a*b的大小為|a||b|sin,方向是以右手系從a到b的正交方向,結果是向量

6樓:匿名使用者

點乘表示標量,相當乘以夾角的餘弦

叉乘表示向量,相當乘以夾角的正弦

7樓:

你這個問題是大學高數問題,問錯地方了!!

8樓:匿名使用者

一般性用字母之間的用點

數字間的用大叉

9樓:匿名使用者

沒區別以後x多了,就都寫點了,而且方便

向量的點乘和叉乘有什麼區別?

10樓:匿名使用者

向量的點乘即數量積,記作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π).以上a與b均為向量

叉乘是向量積,記作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π).以上a與b均為向量。點乘,也叫向量的內積、數量積。

顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin

向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

則 向量a·向量b=a1a2+b1b2+c1c2

向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

11樓:123我就是哎你

分清點乘和叉乘

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

12樓:白智竹辛

向量點乘是各向量的模相乘,不管方向;向量叉乘是各向量相乘,方向也要乘。

向量之間的點乘和叉乘有什麼區別

13樓:匿名使用者

兩個不同的向量乘法。

14樓:一山難容二虎嘎

點乘:a.b=|a|*|b|cosθ

叉乘:axb=|a|*|b|sinθ

(a、b均為向量 θ為a、b向量的夾角)

15樓:喜楚慕胭

有,點乘的結果是一代數,而叉乘的結果是一向量.

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i

jk||a1b1

c1||a2

b2c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

點乘和叉乘的區別

16樓:阿樓愛吃肉

一、兩者的運算結果不同;

1、點乘的運算結果:得到的結果為一個標量。

2、叉乘的運算結果:為一個向量而不是一個標量。

二、兩者的應用範圍不同:

1、點乘的應用範圍:線性代數。

2、叉乘的應用範圍:其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。

三、兩者的概述不同:

1、點乘的概述:點積在數學中又稱數量,積是指接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。

2、叉乘的概述:一種在向量空間中向量的二元運算,並且兩個向量的叉積與這兩個向量和垂直。

17樓:諾闊華逸仙

向量的乘法有兩種,分別成為內積和外積.

內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角

向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin

18樓:匿名使用者

點乘(a,

b,c)點乘(e,f,g)=ae+bf+cg,向量對應元素的乘積的求和,是一個數叉乘(a,b,c)叉乘(e,f,g)=(bg-cf,-ag+ce,af-be),是一個向量,具體做法是將兩個向量分別作為一個3乘3矩陣的第二行跟第三行,第一列為方向向量(x,y,z),將矩陣按第一行,(bg-cf)x+(-ag+ce)y+(af-be)z ,因此答案為(bg-cf,-ag+ce,af-be)。

19樓:下次重出江湖

你可以把向量點乘看做是一個向量在另一個向量上投影長度相乘,也就是一個數。

座標下,也是這個意義。只不過有時候用座標還挺簡單的計算方法

碼字不易,望採納。謝謝

點乘和叉乘的區別是什麼?

20樓:匿名使用者

點乘是向量的內積 叉乘是向量的外積

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。

叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。

21樓:0914菜菜

|區別:

點乘是向量的內積 叉乘是向量的外積。

點乘:點乘的結果是一個實數 a·b=|a|·|b|·cos叉乘:叉乘的結果是一個向量

向量之間的點乘和叉乘有什麼區別點乘和叉乘的區別是什麼

兩個不同的向量乘法。點乘 a.b a b cos 叉乘 axb a b sin a b均為向量 為a b向量的夾角 有,點乘的結果是一代數,而叉乘的結果是一向量.點乘,也叫向量的內積 數量積。顧名思義,求下來的結果是一個數。向量a 向量b a b cos 在物理學中,已知力與位移求功,實際上就是求向...

向量點乘和叉乘的區別是什麼?向量點乘和叉乘怎麼算?

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。點乘和叉乘的區別點乘是向量的內積,叉乘是向量的外積。點乘 點乘的結果是一個實數a b a b cos幾何意義 點乘的幾何意義 可以用來表徵或計算兩個向量之間的夾角,以及在...

向量運算證明點乘和叉乘向量的點乘和叉乘的區別,舉個例子,謝謝!

大學解析幾何裡有這樣一個定理 輪換混合積的三個因子,比不改變它的值,對調任何兩個因子要改變乘積符號,即 abc bca cab bac cab acb abc 包括有點乘和叉乘 由這個定理出發就可以得到推論 a b c a b c 即 axb c abc bca bxc a a bxc 定理的證明主...