向量之間的點乘和叉乘有什麼區別點乘和叉乘的區別是什麼

2021-03-06 23:49:04 字數 5747 閱讀 4954

1樓:匿名使用者

兩個不同的向量乘法。

2樓:一山難容二虎嘎

點乘:a.b=|a|*|b|cosθ

叉乘:axb=|a|*|b|sinθ

(a、b均為向量 θ為a、b向量的夾角)

3樓:喜楚慕胭

有,點乘的結果是一代數,而叉乘的結果是一向量.

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i

jk||a1b1

c1||a2

b2c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

點乘和叉乘的區別是什麼?

4樓:匿名使用者

點乘是向量的內積 叉乘是向量的外積

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。

叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。

5樓:0914菜菜

|區別:

點乘是向量的內積 叉乘是向量的外積。

點乘:點乘的結果是一個實數 a·b=|a|·|b|·cos叉乘:叉乘的結果是一個向量

6樓:匿名使用者

點乘也叫數量積,是向量的內積,結果是一個向量在另一個向量方向上投影的長度,是一個標量。叉乘也叫向量積,是向量的外積,結果是一個和已有兩個向量都垂直的向量。

向量的點乘和叉乘有什麼區別?

7樓:匿名使用者

向量的點乘即數量積,記作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π).以上a與b均為向量

叉乘是向量積,記作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π).以上a與b均為向量。點乘,也叫向量的內積、數量積。

顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin

向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

則 向量a·向量b=a1a2+b1b2+c1c2

向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

8樓:123我就是哎你

分清點乘和叉乘

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

9樓:白智竹辛

向量點乘是各向量的模相乘,不管方向;向量叉乘是各向量相乘,方向也要乘。

向量中的點乘和叉乘有什麼區別?

10樓:匿名使用者

點乘即數量積,記作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。以上a與b均為向量

叉乘是向量積,記作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。以上a與b均為向量

11樓:匿名使用者

點乘是內積,是數值,一個向量在另一個向量上的投值值。

叉乘是向量積,按右手法則得到一個向量(右手伸開的四指從一個向量握向另一個向量,大拇指的方向就是叉乘向量的方向),與相乘的二個向量都垂直。

12樓:寧亭蹇曉星

分清點乘和叉乘

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i

jk||a1b1

c1||a2

b2c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

向量中的點乘和叉乘有什麼區別

13樓:匿名使用者

點乘是內積,考慮向量夾角;叉乘是外積,不考慮向量夾角

14樓:西域牛仔王

點乘的結果是數,叉乘的結果仍是向量

向量的點乘和叉乘的區別,舉個例子,謝謝! 5

15樓:匿名使用者

一、運算結果不同:

叉乘運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量和垂直。點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。

二、應用不同:

1、點乘:平面向量的數量積a·b是一個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。

2、在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線。

三、幾何意義不同:

1、點積(也叫內積)結果 為 x1 * x2 + y1 * y2 = |a||b| cos,可以理解為向量a在向量b上投影的長度乘以向量b的長度。

2、叉積(也叫外積)的模為 x1 * y2 - x2 * y1 = |a||b| sin,可以理解為平行四邊形的有向面積(三維以上為體積)。外積的方向垂直於這兩個方向。

16樓:匿名使用者

你好!很高興為你答疑解惑。

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

我的回答你還滿意嗎?望採納,謝謝!

點乘與叉乘有什麼區別?

17樓:匿名使用者

一、符號不同

點乘:點乘的符號用「 · 」表示。

叉乘:叉乘的符號用「 × 」表示。

二、結果不同

點乘:點乘得到的結果是一個數值。

叉乘:叉乘得到的結果是一個向量。

三、計算過程不同

點乘:點乘是兩個向量的模的乘積再乘上兩個向量夾角的餘弦值。

叉乘:叉乘是兩個向量的模的乘積再乘上這兩個向量夾角的正弦值。

擴充套件資料叉乘在物理領域的應用:

物理裡我們遇到的有關兩個向量叉乘的物理量有磁場裡的洛倫茲力。洛倫茲力是運動的帶電粒子在磁場中受到的力,這個力等於粒子速率v和磁感應強度b叉乘的結果再乘上粒子帶電量q。

通常是通過叉乘的右手法則來判斷這個洛倫茲力的方向。一般都是用左手定則來判斷洛倫茲力和安培力的方向的。

18樓:匿名使用者

向量的乘法有兩種,分別成為內積和外積.

內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin

點乘與叉乘有什麼區別,向量的點乘和叉乘有什麼區別

一 符號不同 點乘 點乘的符號用 表示。叉乘 叉乘的符號用 表示。二 結果不同 點乘 點乘得到的結果是一個數值。叉乘 叉乘得到的結果是一個向量。三 計算過程不同 點乘 點乘是兩個向量的模的乘積再乘上兩個向量夾角的餘弦值。叉乘 叉乘是兩個向量的模的乘積再乘上這兩個向量夾角的正弦值。擴充套件資料叉乘在物...

向量點乘和叉乘的區別是什麼?向量點乘和叉乘怎麼算?

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。點乘和叉乘的區別點乘是向量的內積,叉乘是向量的外積。點乘 點乘的結果是一個實數a b a b cos幾何意義 點乘的幾何意義 可以用來表徵或計算兩個向量之間的夾角,以及在...

向量外積和叉積有區別麼,向量的點乘和叉乘有什麼區別?什麼是右手定則

首先,外積表示的結果仍是一個向量,而內積結果為一常數 其次,外積的結果大小表示了兩個向量組成平行四邊形的面積大小有關,而內積結果體現了向量的投影!首先樓上答非所問,其次向量的外積就是叉積。請問張量的內積,外積,直積,叉積,張量積,他們之間有什麼區別和聯絡?能否給些具體運算的例子 10 一 叉積與數量...