點乘和叉乘的用法,區別。要是中考點乘,叉乘弄錯會不會扣分

2021-03-03 22:04:36 字數 6167 閱讀 2643

1樓:匿名使用者

寫清楚就好。

一般字母之間點乘 如:x . y (習慣上不寫,如xy,一般不用叉乘,「x」與「×」容易搞混)

一般數字之間叉乘 如:5×6 (一般不用點乘)數字與字母間點乘 如:5.x(習慣上不寫,如5x)中考上對這個不會很嚴格。總之,數字間叉乘少不了,其他時候的乘法都可以省略

2樓:匿名使用者

初中階段是沒有什麼區別的,一般是字母和字母用點乘(或者直接把字母挨著寫)

數字和數字用叉乘(這個千萬不能挨著寫) 數字和字母乘的話用一般是用點乘(或者直接數字在前字母在後挨著寫)

3樓:匿名使用者

只是書寫習慣問題,沒有區別,中考不會扣分。

點乘和叉乘的區別

4樓:阿樓愛吃肉

一、兩者的運算結果不同;

1、點乘的運算結果:得到的結果為一個標量。

2、叉乘的運算結果:為一個向量而不是一個標量。

二、兩者的應用範圍不同:

1、點乘的應用範圍:線性代數。

2、叉乘的應用範圍:其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。

三、兩者的概述不同:

1、點乘的概述:點積在數學中又稱數量,積是指接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。

2、叉乘的概述:一種在向量空間中向量的二元運算,並且兩個向量的叉積與這兩個向量和垂直。

5樓:諾闊華逸仙

向量的乘法有兩種,分別成為內積和外積.

內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角

向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin

6樓:匿名使用者

點乘(a,

b,c)點乘(e,f,g)=ae+bf+cg,向量對應元素的乘積的求和,是一個數叉乘(a,b,c)叉乘(e,f,g)=(bg-cf,-ag+ce,af-be),是一個向量,具體做法是將兩個向量分別作為一個3乘3矩陣的第二行跟第三行,第一列為方向向量(x,y,z),將矩陣按第一行,(bg-cf)x+(-ag+ce)y+(af-be)z ,因此答案為(bg-cf,-ag+ce,af-be)。

7樓:下次重出江湖

你可以把向量點乘看做是一個向量在另一個向量上投影長度相乘,也就是一個數。

座標下,也是這個意義。只不過有時候用座標還挺簡單的計算方法

碼字不易,望採納。謝謝

物理上的點乘和叉乘是什麼意思

8樓:匿名使用者

設兩個向量都是單位長度向量,點乘計算一個向量在另一個向量上的投影長度,其結果是一個標量;而叉乘計算兩個向量圍成的平行四邊形面積,然後乘以與前兩個向量所處平面垂直的第三個單位向量,因此結果是向量。這些計算與特定物理量相互作用的方式是一致的,例如計算電場力做功時,電場向量與電流向量要點乘。而計算洛倫茨力時,電流方向、磁場方向和電荷受力方向之間滿足叉乘關係。

9樓:匿名使用者

總體上說由於角動量包含有叉乘,所以一般與旋轉有關的量都用叉乘。與此類似與能量有關的都用點乘。不過沒有絕對的。

叉乘和點乘是兩種不同的運算,和加減沒什麼區別,什麼時候用一般看具體需要,就像什麼時候用乘法什麼時候用加法一樣。

點乘和叉乘的區別和聯絡?

10樓:匿名使用者

點乘一般用於字母之間

叉乘一般用於數字之間

因為叉乘如果用於字母間,就和字母長的很像,不太好區分,比如:x×x(x乘x )

點乘和叉乘都是乘的意思

點乘與叉乘有什麼區別?

11樓:匿名使用者

一、符號不同

點乘:點乘的符號用「 · 」表示。

叉乘:叉乘的符號用「 × 」表示。

二、結果不同

點乘:點乘得到的結果是一個數值。

叉乘:叉乘得到的結果是一個向量。

三、計算過程不同

點乘:點乘是兩個向量的模的乘積再乘上兩個向量夾角的餘弦值。

叉乘:叉乘是兩個向量的模的乘積再乘上這兩個向量夾角的正弦值。

擴充套件資料叉乘在物理領域的應用:

物理裡我們遇到的有關兩個向量叉乘的物理量有磁場裡的洛倫茲力。洛倫茲力是運動的帶電粒子在磁場中受到的力,這個力等於粒子速率v和磁感應強度b叉乘的結果再乘上粒子帶電量q。

通常是通過叉乘的右手法則來判斷這個洛倫茲力的方向。一般都是用左手定則來判斷洛倫茲力和安培力的方向的。

12樓:匿名使用者

向量的乘法有兩種,分別成為內積和外積.

內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin

13樓:杞霞野午

點乘是向量的內積

叉乘是向量的外積

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。

叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。

擴充套件資料:

向量的點乘:a*b

公式:a*b

=|a|

*|b|

*cosθ

點乘又叫向量的內積、數量積,是一個向量和它在另一個向量上的投影的長度的乘積;是標量。

點乘反映著兩個向量的「相似度」,兩個向量越「相似」,它們的點乘越大。

向量的叉乘:a∧b

a∧b=

|a|*

|b|*

sinθ

向量積被定義為:

模長:(在這裡θ表示兩向量之間的夾角(共起點的前提下)(0°≤θ≤180°),它位於這兩個向量所定義的平面上。)方向:

a向量與b向量的向量積的方向與這兩個向量所在平面垂直,且遵守右手定則。(一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。

c=a∧b)參考資料:點積—搜狗百科,向量積—搜狗百科

14樓:遊萱斐水

有,點乘的結果是一代數,而叉乘的結果是一向量.

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i

jk||a1b1

c1||a2

b2c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

15樓:匿名使用者

a.b=|a||b|cos結果是一個標量

a*b的大小為|a||b|sin,方向是以右手系從a到b的正交方向,結果是向量

16樓:匿名使用者

點乘表示標量,相當乘以夾角的餘弦

叉乘表示向量,相當乘以夾角的正弦

17樓:

你這個問題是大學高數問題,問錯地方了!!

18樓:匿名使用者

一般性用字母之間的用點

數字間的用大叉

19樓:氫氧化青

沒區別乘法(multiplication)亦是最早產生的運算之一,且出現於人類最早的文字記載當中。

中國古人及古希臘的丟番圖都不用乘號(signs of multiplication) ,但後者則以兩數並列表示相乘(與加法相同)。印度的**沙裡殘簡中,把數排成表示;排成

表示 xx

施蒂費爾於2023年出版的一本算術書內以大寫字母m 及d分別表示乘和除。斯蒂文於2023年出版的書內亦採用 了這符號,他以表示現在的3xyz2。這兒的sec 及ter分別表示第

二、三個未知數。

韋達(1591)以ainb作為a與b的乘積。一些十五世紀的手稿及印刷品仍以並列表示相乘,如6x,5x2等,但必須有 字母才行,因5表示5+而非5x,這記法至今還沿用著。

西方稱「x』為聖安德魯斜十字(st. andrew's cross)(因安德魯為耶穌的十二門徒之一,傳說他被釘在十字架上處死),這 名稱與數學全無關係。十六世紀出版的一些數學書就有采用這號,但開首並非現代用法,而是以它表示兩個獨立的 乘法運算,如以表示現在的315172x174715 及395903x295448兩個乘法。

奧特雷德於2023年在其著作《數學之鑰》(clavis mathematicae) 中首次以「×」表示兩數相乘,即現代的乘號,後日漸流行 ,沿用至今。萊布尼茨於2023年7月29日給j.伯努利的一封信內提出以圓點「.」表示乘,以防「×」號與字母x相混 淆。後來以「.」表示乘法的用法亦相當流行,現今歐洲大陸派(德、法、蘇等國)規定以「.」作乘號。

其他國家則以「×」 作乘號,「.」為小數點。而我國則規定以「×」或「.」作乘號都可,一般於字母或括號前的乘號可略去。

20樓:匿名使用者

沒區別以後x多了,就都寫點了,而且方便

向量的點乘和叉乘的區別,舉個例子,謝謝! 5

21樓:匿名使用者

一、運算結果不同:

叉乘運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量和垂直。點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。

二、應用不同:

1、點乘:平面向量的數量積a·b是一個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。

2、在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線。

三、幾何意義不同:

1、點積(也叫內積)結果 為 x1 * x2 + y1 * y2 = |a||b| cos,可以理解為向量a在向量b上投影的長度乘以向量b的長度。

2、叉積(也叫外積)的模為 x1 * y2 - x2 * y1 = |a||b| sin,可以理解為平行四邊形的有向面積(三維以上為體積)。外積的方向垂直於這兩個方向。

22樓:匿名使用者

你好!很高興為你答疑解惑。

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=

| i j k|

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

我的回答你還滿意嗎?望採納,謝謝!

點乘,叉乘和乘的區別,點乘和叉乘的區別和聯絡?

點乘是向量的內積 叉乘是向量的外積例如 點乘 點乘的結果是一個實數 a b a b cos示a,b的夾角 叉乘 叉乘的結果是一個向量 當向量a和b不平行的時候 其模的大小為 a b a b sin 當a和b平行的時候,結果為0向量 向量之間的點乘和叉乘有什麼區別 兩個不同的向量乘法。點乘 a.b a...

向量之間的點乘和叉乘有什麼區別點乘和叉乘的區別是什麼

兩個不同的向量乘法。點乘 a.b a b cos 叉乘 axb a b sin a b均為向量 為a b向量的夾角 有,點乘的結果是一代數,而叉乘的結果是一向量.點乘,也叫向量的內積 數量積。顧名思義,求下來的結果是一個數。向量a 向量b a b cos 在物理學中,已知力與位移求功,實際上就是求向...

向量點乘和叉乘的區別是什麼?向量點乘和叉乘怎麼算?

點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。點乘和叉乘的區別點乘是向量的內積,叉乘是向量的外積。點乘 點乘的結果是一個實數a b a b cos幾何意義 點乘的幾何意義 可以用來表徵或計算兩個向量之間的夾角,以及在...