1樓:叫那個不知道
微積分學的發展與應用幾乎影響了現代生活的所有領域。它與大部分科學分支關係密切,包括精算、計算機、統計、工業工程、商業管理、醫藥、護理、人口統計,特別是物理學;經濟學亦經常會用到微積分學。幾乎所有現代科學技術,如:
機械、水利、土木、建築、航空及航海等工業工程都以微積分學作為基本數學工具。微積分使得數學可以在(非常數)變化率和總改變之間互相轉化,讓我們可以在已知其中一者時求出另一者。
物理學大量應用微積分;古典力學、熱傳和電磁學都與微積分有密切聯絡。已知密度的物體質量、物體的轉動慣量、物體在保守力場的總能量都可用微積分來計算。牛頓第二定律便是微積分在力學中的一個應用例子:
它的最初陳述使用了「變化率」一詞,而「變化率」即是指導數。
陳述大意為:物體動量的變化率等於作用在物體上的力,而且朝同一方向。今天常用的表達方式是 =m\mathbf } ,它包括了微分,因為加速度是速度的導數,或是位置向量的二階導數。
已知物體的加速度,我們就可以得出它的路徑。
麥克斯韋爾的電磁學理論和愛因斯坦的廣義相對論都應用了微分。化學使用微積分來計算反應速率,放射性衰退。生物學用微積分來計算種群動態,輸入繁殖率和死亡率來模擬種群改變。
微積分可以與其他數學分支並用。例如,可與線性代數並用,來求得某區域中一組點的「最佳」線性近似。它也可以用在概率論中,來確定由給定密度函式所給出的連續隨機變數之概率。
在解析幾何對函式影象的研究中,微積分可以用來求得最大值、最小值、斜率、凹度、拐點等。
格林公式將一個封閉曲線上的線積分,與一個邊界為且平面區域為的雙重積分聯絡起來。這一點被應用於求積儀這個工具,它用於量度在平面上的不規則圖形面積。例如,它可以在設計住宅擺設時,計算不規則的花瓣床、游泳池所佔的面積。
在醫療領域,微積分可以計算血管最優支角,將血流最大化。通過藥物在體內的衰退規律,微積分可以推匯出服藥規律。
在經濟學中,微積分可以通過計算邊際成本和邊際收益來確定最大利潤。
微積分也被用於尋找方程的近似值;實踐中,它是在各種應用裡解微分方程、求根的標準做法。典型的方法有牛頓法、定點迭代法、線性近似等。比如:
宇宙飛船利用一種尤拉方法的變體來求得零重力環境下的近似航線。
擴充套件資料
早期的微積分概念來自於埃及、希臘、中國、印度、伊拉克、波斯、日本,但現代微積分來自於歐洲。17世紀時,艾薩克·牛頓與戈特弗裡德·萊布尼茨在前人的基礎上提出微積分的基本理論。微積分基本概念的產生是建立在求瞬間運動和曲線下面積這兩個問題之上的。
微分應用包括對速度、加速度、曲線斜率、最優化等的計算。積分應用包括對面積、體積、弧長、質心、做功、壓力的計算。更高階的應用包括冪級數和傅立葉級數等。
微積分也使人們更加精確地理解到空間、時間和運動的本質。多個世紀以來,數學家和哲學家都在爭論除以零或無限多個數之和的相關悖論。這些問題在研究運動和麵積時常常出現。
古希臘哲學家埃利亞的芝諾便給出了好幾個著名的悖論例子。微積分提供了工具,特別是極限和無窮級數,以解決該些悖論。
2樓:小平愛飛
微積分作為數學知識的基礎 ,是學習經濟學的必備知識 ,微積分在經濟學中最基本的一些應用,計算邊際成本、 邊際收入、 邊際利潤並解釋其經濟意義, 尋求最小生產成本或制定獲得最大利潤的一系列策略
3樓:阿明嘉
學微積分可以開拓思維,提高自己的分析能,比如集散思維和立體想象能力,有很多無形的用處。
4樓:獨步芬芳
基本上沒用,我是學管理的,畢業以後再也沒有用過,其實那麼專業的演算法不搞數學研究根本沒用,不過,經濟類專業可能會用一些基本的簡單的演算法,我沒搞過個人投資,但是我身邊搞個人投資搞的很有興致的,我估計他們也不會微積分
5樓:匿名使用者
我也是學管理的 感覺微積分基本沒用,高等數學應該還有點用吧 微積分是高等數學的一部分
不過高等數學應該比微積分有用
但是這兩種數學都應該會改變我們的思維方式
6樓:夙婕史和暖
一言而蔽之,微積分是研究函式的一個數學分支。函式是現代數學最重要的概念之一,描述變數之間的關係,為什麼研究函式很重要呢?還要從數學的起源說起。
各個古文明都掌握一些數學的知識,數學的起源也很多很多,但是一般認為,現代數學直承古希臘。古希臘的很多數學家同時又是哲學家,例如畢達哥拉斯,芝諾,這樣數學和哲學有很深的親緣關係。古希臘的最有生命力的哲學觀點就是世界是變化的(德謨克利特的河流)和亞里斯多德的因果觀念,這兩個觀點一直被人廣泛接受。
前面談到,函式描述變數之間的關係,淺顯的理解就是一個變了,另一個或者幾個怎麼變,這樣,用函式刻畫複雜多變的世界就是順理成章的了,數學成為理論和現實世界的一道橋樑。
微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。這些理論都能解決什麼問題呢?下面先舉兩個實踐中的例子。
舉個最簡單的例子,火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。
為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。
我相信讀者在看這篇文章的時候是在使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。
計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。
這個兩個例子牽扯的數學知識並不太多,但是已經顯示出微積分非常大的力量。實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。
微積分有什麼具體作用和具體意義。
學習微積分有什麼用處?
7樓:匿名使用者
例如,微積分在投資決策中的運用:初等數學在經濟生活中的應用十分廣泛,例如在投資決策中,如果以均勻流的存款方式,也就是將資金以流水一樣的方式定期不斷存入銀行中,那麼計算1年後的中價值就可以通過定積分的方式。例如某企業一次性投資某專案2億元,並據頂一年後建成,獲得經濟回報。
如果忽略資金的時間價值,那麼5年時間就能收回成本,但是如果將資金的時間價值考慮進來,可能情況就是有所變化。因此,微積分的應用,讓投資更趨向於理性化,能夠風險,提高回報。
8樓:答聽芹虢凱
典型的中國學生,學了也不知道幹什麼用!
微積分是整個近代科學的基礎。
整個近代力學體系就是在微積分基礎上誕生的。沒有微積分,就沒有整個現代科學,航空航天,****,石油化工,空氣動力學,機械製造,運動**,積體電路,微機控制,逆向工程,光電理論,流體力學,彈性力學,彈道導彈計算等等哪一個離得開微積分?
你想要具體例子是不:見過卡車麼?卡車後橋的主傳動軸的設計,需要用有限單元法來計算,而有限單元法本質上就是
解上萬個未知量的微分方程組。沒有微積分的理論基礎,誰能解的出來?
高階轎車在設計時,需要考慮乘坐舒適性,而舒適性靠車體的振動學特性來保證,也需要做大量的微分方程來計算,對於非線性系統,還需要做偏微分方程的求解。
微積分學了有什麼用
9樓:匿名使用者
從事基礎工科研究和實驗的工作者,在建築行業、航空行業,等等,很多地方用到微積分,比如設計院,航空實驗,等等,如果不是基礎工科的從業者,微積分用處不大,現在經濟學也像模像樣抵用起了微積分,
搞篇**不出現點微積分沒水平沒面子,
尤其是金融分支,主要涉及金融產品定價的問題,比如保險費的釐定,衍生品固定收益品定價,風險的量化,等等,都需要概率隨機微積分,
但這也是少數精算師的工作,一般金融工作者也用不著微積分,金融機構少數幾個人就可以完成定價,剩下的就是對市場的**進行買賣了。
10樓:刑文竹紫雪
用處大了!
可以通過
微積分基本
定理和解微分方程來預知未來!
學微積分的用途是什麼?
11樓:匿名使用者
微積分是與應用聯絡著發展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律匯出了開普勒行星運動三定律。此後,微積分學極大的推動了數學的發展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發展。並在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助於這些應用的不斷髮展。
一元微分
定義: 設函式y = f(x)在某區間內有定義,x0及x0 + δx在此區間內。如果函式的增量δy = f(x0 + δx)
12樓:匿名使用者
微積分是研究函式的一個數學分支
微積分是與實際應用聯絡著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷髮展。
微積分學是微分學和積分學的總稱
不規則圖形面積體積計算, 變力做功,非勻變速運動都會運用到微積分!
13樓:匿名使用者
個人感覺,沒用,除了上學的時候用的上,
微積分的實際意義?在生活當中有哪些例子
14樓:劍指長空明德
微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。
實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。
例子一:火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。
現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。
例子二:大家都使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。
windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?
實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。
擴充套件資料
微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。
微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
微積分的基本概念和內容包括微分學和積分學。
微分學的主要內容包括:極限理論、導數、微分等。
積分學的主要內容包括:定積分、不定積分等。
從廣義上說,數學分析包括微積分、函式論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分
什麼是微積分,什麼叫微積分?
微積分 calculus 是高等數學中研究函式的微分 積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限 微分學 積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式 速度 加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定...
微積分與高等數學有什麼區別,高數和微積分有什麼區別
二者都屬於數學範疇,高等數學範圍要大於微積分。高等數學除了微積分學的內容外,還有常微分方程,空間解析幾何等內容。望採納 高等數學是理工科非數學類的基礎課,包括極限論 微積分學 空間解析幾何與向量代數 級數論與微分方程。微積分主要是部分文史類的數學基礎課。而數學專業則比較系統化,包括數學分析 高等代數...
如何用微積分計算?已知微分怎樣計算積分
如下 令x tant,t 2,2 1 x sect,dx sec tdt 1 x dx sec t dt sect d tant sect tant tant d sect sect tant tan t sectdt sect tant sec t 1 sectdt sect tant sec t...