1樓:匿名使用者
我給你做第一題的第一小題和第二題,第一題的第2小題與第1小題類似
線性代數二次型化為標準型
2樓:匿名使用者
^二次型矩陣 a =
[ 2 -2 0]
[-2 1 -2]
[ 0 -2 0]
|λe-a| =
|λ-2 2 0|| 2 λ-1 2|| 0 2 λ|= λ(λ-1)(λ-2) - 4(λ-2) - 4λ= λ(λ-1)(λ-2) - 8(λ-1)= (λ-1)(λ^2-2λ-8) = (λ-1)(λ-4)(λ+2)
特徵值λ = 4,1, -2.
對於特徵值 λ = 4,λe-a =
[ 2 2 0]
[ 2 3 2]
[ 0 2 4]
初等行變換為
[ 1 1 0]
[ 0 1 2]
[ 0 2 4]
初等行變換為
[ 1 0 -2]
[ 0 1 2]
[ 0 0 0]
得特徵向量(2 -2 1)^t,單位化是(2/3 -2/3 1/3)^t;
對於特徵值 λ = 1,λe-a =
[-1 2 0]
[ 2 0 2]
[ 0 2 1]
初等行變換為
[ 1 -2 0]
[ 0 4 2]
[ 0 2 1]
初等行變換為
[ 1 0 1]
[ 0 2 1]
[ 0 0 0]
得特徵向量(2 1 -2)^t,單位化是(2/3 1/3 -2/3)^t;
對於特徵值 λ = -2,λe-a =
[-4 2 0]
[ 2 -3 2]
[ 0 2 -2]
初等行變換為
[ 2 -1 0]
[ 0 -2 2]
[ 0 2 -2]
初等行變換為
[ 2 0 -1]
[ 0 1 -1]
[ 0 0 0]
得特徵向量(1 2 2)^t,單位化是(1/3 2/3 2/3)^t.
得正交矩陣 p =
[ 2/3 2/3 1/3][-2/3 1/3 2/3][ 1/3 -2/3 2/3]作正交變換 x = py
使得 f = x^tax = y^t(p^tap)y = 4(y1)^2 + (y2)^2 - 2(y3)^2
線性代數二次型的標準型,規範型的區別 請詳細說明,謝謝了
3樓:拜讀尋音
他們的區別:
1、標準型的係數在採用正交變換的時間,平方項的係數常用其特徵值規範形中平方項的係數都是 1 或 -1,正負項的個數決定於特徵值正負數的個數
2、由標準形到規範形, 只需將標準型中平方項的正係數改為 1, 負係數改為 -1
正係數項放在前 即可
線性代數中,二次型化為標準型的結果是唯一的嗎?
4樓:angela韓雪倩
不唯一。
化二次型為標準型,有兩種方法。
1、配方,配方只是用了某種座標變換,得到標準型的係數,不一定是特徵值。
2、正交變換,得到的標準型係數一定是特徵值。
可以隨意的調換這些係數的位置,只要使用的變換矩陣的向量對應就可以了。
n個變數的二次多項式,即在一個多項式中,未知數的個數為任意多個,但每一項的次數都為2的多項式。線性代數的重要內容之一,它起源於幾何學中二次曲線方程和二次曲面方程化為標準形問題的研究。二次型理論與域的特徵有關。
5樓:慧忍居式
不是的,可以將特徵值和特徵向量都相應地換一下順序。
線性代數 二次型化為標準型 標準型前面的係數有順序嗎
6樓:郎雲街的月
這個順序其實就是對角陣當中的特徵值的順序,而特徵值的順序與相似變換矩陣當中的特徵向量的順序相對應
線性代數,化二次型為標準型
7樓:尹六六老師
求出的t是正交矩陣,
那麼,t的逆等於t的轉置。
這樣,就可以省掉求逆的過程,
你不妨試試
t的轉置·a·t
看看是不是題中的結果。
線性代數(二次型化為規範型問題)如何解決?
8樓:墨汁諾
1、是的,一般是先化為標準型;
如果題目不指明用什麼變換, 一般情況配方法比較簡單;
若題目指明用正交變換, 就只能通過特徵值特徵向量了;
2、已知標準形後, 平方項的係數的正負個數即正負慣性指數;
配方法得到的標準形, 係數不一定是特徵值。
例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1;
所以規範型中平方項的係數為 1,1,-1 (兩正一負)。
3、有的二次型可以直接化為規範形,可省去化標準形的過程,比如f(x,y,z)=5x^2+2xy+y^2-4z^2,配方4x^2+(x+y)^2-4z^2。若令u=x,v=x+y,w=z,即x=u,y=u-v,z=w,則f=4u^2+v^2-4w^2,這是標準形。如果令u=2x,v=x+y,w=2z,則直接得規範形f=u^2+v^2-w^2。
9樓:匿名使用者
線性代數二次型化元素規劃如何解決這是數學問題找一數學老師幫你剪
線性代數二次型化標準型,線性代數,這個二次型能化為規範型嗎怎麼化
二次型對稱矩陣a 17 2 2 2 14 4 2 4 14 使用合同變換 可以得到 17 y1 2 234 17 y2 2 162 13 y3 2 注意,此題答案不唯一,還可以化內為規容範形 1 y1 2 1 y2 2 1 y3 2 此題目用配方法最簡單,不過我還是提供一種最典型的完整做法吧.線性代...
線性代數,化二次型為標準型,線性代數二次型化為標準型
求出的t是正交矩陣,那麼,t的逆等於t的轉置。這樣,就可以省掉求逆的過程,你不妨試試 t的轉置 a t 看看是不是題中的結果。線性代數二次型化為標準型 二次型矩陣 a 2 2 0 2 1 2 0 2 0 e a 2 2 0 2 1 2 0 2 1 2 4 2 4 1 2 8 1 1 2 2 8 1 ...
線性代數二次型問題,線性代數二次型化為規範型問題
該二次型,實際上是向量的內積,寫成向量內積的形式,等於 ax,ax 寫成矩陣乘法的形式,等於 ax t ax xtat ax xt ata x 因此矩陣是ata,選c f x ax 2 x ta tax 運算過程截圖在上面了,c,d選項正好是把a的下標反過來的。線性代數 二次型化為規範型問題 1.是...