求證明不等式a b alna ba b b ab

2021-06-14 21:47:08 字數 2011 閱讀 4864

1樓:夜的眼睛

證:設f(x)=lnx則:f'(x)=1/x;根據拉格朗日中值定理f(a)-f(b)=f'(u)(a-b)(0

1/u=[lna-lnb]/(a-b),所以lna/b=(a-b)/u,又因為(0

設a>b>0,證明:(a-b)/a

2樓:tony羅騰

證:設f(x)=lnx則:f'(x)=1/x;根據拉格朗日中值定理f(a)-f(b)=f'(u)(a-b)(0以f'(u)=[f(a)-f(b)]/(a-b),即:

1/u=[lna-lnb]/(a-b),所以lna/b=(a-b)/u,又因為(0

當0

3樓:匿名使用者

題目有些問題吧

微分中值定理證明

ln(a/b)=lna-lnb=-(lnb-lna)=-(b-a)/ksai,ksai屬於(a,b)

-(b-a)/a<-(b-a)/ksai<-(b-a)/b

設a>b>c證明不等式(a-b)/a

4樓:

題應為a>b>0

設y=lnx,則y=lnx在區間[b,a]上連續,在(b,a)內可導,由拉格朗日中值定理,在區間(b,a)內至少存在一點ξ,使

f'(ξ)=(lna-lnb)/(a-b)=ln(a/b)/(a-b)

而1/a

故1/a

5樓:匿名使用者

a>b>0,設x=a/b,則x>1,不等式化為1-1/x1),則

f'(x)=1/x-1<0,f(x)↓,

∴f(x)1),則

g'(x)=1/x-1/x^2=(x-1)/x^2>0,g(x)↑,g(x)>g(1)=0,

∴1-1/x

∴命題成立。

用拉格朗日中值定理證明不等式(b-a)/b<㏑b/a<(b-a)/a

6樓:

如果a<0,b<0,用-a,-b代替。

如果a>b,可以交換a和b的地位,要證的不等式和a

下面只討論a

(ln x)' = 1/x

由中值定理,存在a

lnb - ln a = (b-a) * (ln c)' = (b-a)/c

由於a

設a>b>0,證(a-b)/a

7樓:匿名使用者

^設a/b=x

就變成1-1/x1

第一個<號

令f(x)=lnx+1/x-1

求導1/x-1/x^2=1/x(1-1/x)>0所以f(x)遞增 最小值是f(1)=0 所以f(x)>0 第一個《成立

第二個《號

令f(x)=x-1-lnx

求導1-1/x>0 遞增 f(1)=0 所以f(x)>0 第二個《成立

微分中值定理

令f(x)=lnx f'(x)=1/x

由拉格朗日中值定理

存在b

f(a)-f(b)=f'(c)(a-b)

lna-lnb=1/c*(a-b) 那麼ln(a/b)=1/c*(a-b)

其中b

如何證明平均不等式?即求證 a1 a2ann

n 3 證明略 先證n 4 a1 a2 a3 a4 a1 a2 a3 a4 2sqrt a1a2 2sqrt a3a4 2 sqrt a1a2 sqrt a3a4 4sqrt sqrt a1a2 sqrt a3a4 4sqrt 4,a1a2a3a4 即a1 a2 a3 a4 4sqrt 4,a1a2...

均值不等式推導過程,均值不等式的證明過程

證明 a 2 b 2 2ab a b 2 0 a 2 b 2 2ab 當且僅當a b時等號成立 當a b都是正實數時,a b 2 ab 證明過程是這樣 a b a 2 b 2 2 a b 2 ab a b 2 ab 高中數學求解,均值不等式是如何推導的?a b a 2ab b 0 a b 2ab 當...

高數不等式證明題,急求解謝謝,高數不等式證明題線上求急

證 1 x 0時真 x 0時,只需證 sinx x 1 只需證 sinx sin0 x 0 1設f t sint,則f t 在 x,0 或 0,x 區間上滿足拉格朗日中值定理條件專 存在 使f cos sinx sin0 x 0 得 sinx sin0 x 0 cos 屬 1即x 0時 sinx x...