1 x 6 dx不定積分,1 1 x 6 dx不定積分

2021-09-02 12:13:38 字數 707 閱讀 3222

1樓:蹦迪小王子啊

1/(1+x^6)dx不定積分求法如下:

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f‘(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

擴充套件資料:常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

2樓:茹翊神諭者

拆開來算即可,答案如圖所示

求不定積分1x22x5dx

解 1 x 2 2x 5 dx 1 x 1 2 4 dx 令x 1 2tant,則x 2tant 1那麼,1 x 2 2x 5 dx 1 x 1 2 4 dx 1 2tant 2 4 d 2tant 1 1 4 1 sect 2d 2tant 1 2 dt t 2 c 又因為x 1 2tant,所以...

求xx1dx的不定積分,求不定積分x1xx2dx

x x 1 dx x x 1 x 1 x 1 d x 1 x 1 x 1 d x 1 2 5 x 1 5 2 3 x 1 c 設 x 1 t,x 1 t dx 2tdt,x x 1 dx 2 t 4 t dt 2t 5 5 2t 3 c 2 5 x 1 5 2 2 3 x 1 3 2 c.令t 根號...

dxx1x,求不定積分x1xx2dx

x 1 x x 1 2 2 1 2 2三角換元脫根號令x secu 2 1 2 1 tanu 2 d secu 2 1 2 secudu ln tanu secu ln2 c 有根式的就把根式有理化。求不定積分 x 1 x x 2 dx 不定積分 x x 2 x 2 dx的結果為2 3 ln x 2...