根號下1x2y2其中積分割槽域為x,yx2y2小於等於

2021-03-03 21:58:47 字數 3149 閱讀 7708

1樓:匿名使用者

【數學之美】團隊為您解答,若有不懂請追問,如果解決問題請點下面的「選為滿意答案」。

計算二重積分∫∫ 1/根號下 1+x^2+y^2 其中積分割槽域為{(x,y)|x^2+y^2小於等於3}

2樓:丙翠花波姬

這是二重積分,要確定積分上下限。

積分割槽域的圖形知道吧?是閉環域。

換成極座標後,角度θ從0積到2∏,r從1積到2。

表示式為∫dθ∫lnr^2

rdr,注意要寫積分上下限。

然後算2個定積分就行了。

計算二重積分∫∫√(x^2+y^2)dxdy,其中積分割槽域d={(x,y)|1<=x^2+y^2<=4}

3樓:匿名使用者

用極座標:

∫∫√(x^2+y^2)dxdy

=∫(0, 2π)dθ∫(1,2)r^2dr=2π(8-1)/3

=14π/3

4樓:火日立

設極座標x=cosθ,y=sinθ,1<=ρ<=2原式=∫0到2π dθ∫1到2 ρlnρ^2dρ=2π*(1/2*ρ^2*lnρ^2-1/2*ρ^2)|(1到2)=2π*(4ln2-3/2)

=π*(8ln2-3)

計算二重積分∫∫√(x^2+y^2)dxdy,其中積分割槽域d={(x,y)|1<=x^2+y^2<=4}

5樓:章**鄞霜

這是二重積分,要確定積分上下限。

積分割槽域的圖形知道吧?是閉環域。

換成極座標後,角度θ從0積到2∏,r從1積到2。

表示式為∫dθ∫lnr^2

rdr,注意要寫積分上下限。

然後算2個定積分就行了。

計算二重積分∫∫ln(x^2+y^2)dxdy,其中積分割槽域d={(x,y)/1<=x^2+y^2<=4}

6樓:珠海

答:設極座標x=cosθ,y=sinθ,1<=ρ<=2

原式=∫0到2π dθ∫1到2 ρlnρ^2dρ=2π*(1/2*ρ^2*lnρ^2-1/2*ρ^2)|(1到2)=2π*(4ln2-3/2)

=π*(8ln2-3)

7樓:多皎惠涵亮

這是二重積分,要確定積分上下限。

積分割槽域的圖形知道吧?是閉環域。

換成極座標後,角度θ從0積到2∏,r從1積到2。

表示式為∫dθ∫lnr^2

rdr,注意要寫積分上下限。

然後算2個定積分就行了。

計算二重積分。 ∫∫根下{(1-x^2-y^2)/(1+x^2+y^2)}dσ,d:x^2+y^2=1及座標軸所圍成的第一象限區域

8樓:星光下的守望者

化為極座標

原式=∫

[0->π/2]dθ∫[0->1] [(1-r²)/(1+r²)]^(1/2) rdr

=π/2∫[0->1] (1/2)[(1-r²)/(1+r²)]^(1/2) dr²

第二類換元法

令t=[(1-r²)/(1+r²)]^(1/2),解出r²=(1-t²)/(t²+1),dr²/dt=[(1-t²)/(t²+1)]'=-4t/(t²+1)²

r²∈[0,1] -> t∈[1,0]

=π/4∫[1->0] -4t²/(t²+1)²dt

=π∫[0->1] t²/(t²+1)²dt

=π∫[0->1] (t²+1)/(t²+1)²dt - ∫[0->1] 1/(t²+1)²dt

=π [(arctan1-arctan0) - (t/(1+t^2)+arctant)/2 | (0->1) ]

=π [π/4-(1/2+π/4-0-0)/2]

=π [π/8 - 1/4]

=π*(π-2)/8

其中用到了:

∫1/(1+t^2)^2dt=(t/(1+t^2)+arctant)/2+c

資料請見

過程有點複雜,可能還有更好的方法我沒有找到

計算二重積分.∫∫根下{(1-x^2-y^2)/(1+x^2+y^2)}dσ,d:x^2+y^2<=ax的二重積分 15

9樓:浮生梔

化為極座標,原式=∫[0->π/2]dθ∫[0->1] [(1-r²)/(1+r²)]^(1/2) rdr

=π/2∫[0->1] (1/2)[(1-r²)/(1+r²)]^(1/2) dr²

第二類換元法

令t=[(1-r²)/(1+r²)]^(1/2),解出r²=(1-t²)/(t²+1),dr²/dt=[(1-t²)/(t²+1)]'=-4t/(t²+1)²

r²∈[0,1] -> t∈[1,0]

=π/4∫[1->0] -4t²/(t²+1)²dt

=π∫[0->1] t²/(t²+1)²dt

=π∫[0->1] (t²+1)/(t²+1)²dt - ∫[0->1] 1/(t²+1)²dt

=π [(arctan1-arctan0) - (t/(1+t^2)+arctant)/2 | (0->1) ]

=π [π/4-(1/2+π/4-0-0)/2]

=π [π/8 - 1/4]

=π*(π-2)/8

其中用到了:

∫1/(1+t^2)^2dt=(t/(1+t^2)+arctant)/2+c

擴充套件資料

積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的正實值函式,在一個實數區間上的定積分可以理解為在座標平面上,由曲線、直線以及軸圍成的曲邊梯形的面積值(一種確定的實數值)。

積分的一個嚴格的數學定義由波恩哈德·黎曼給出(「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。

比如說,路徑積分是多元函式的積分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個曲面代替。對微分形式的積分是微分幾何中的基本概念。

R2x2y2d積分割槽域是圓周x

a x y d 積分割槽域是圓周x y ax的閉區間 為避免符號混亂我把r換成a 解 積分域 x ax y x a 2 y a 4 這是一個圓心在 a 2,0 半徑為a 2的園。a 0 其中sin 是奇函式,其在對稱區間上的積分 0 計算二重積分。根下 r 2 x 2 y 2 d d是由圓周x 2 ...

求曲線積分 x 2 ds,其中為球面x 2 y 2 z 2 a 2與平面x y z 0的交線

結果為 2 a 3 解題過程如下 解 曲線投影到xoy面上 得到曲線x xy y a 2 配方 x y 2 3 4y a 2 令x y 2 2 2acost 3 2y 2 2asint 所以x 2 2acost 6 6asint y 6 3asint z x y 2 2acost 6 6asint ...

計算二重積分D根號 x 2 y 2 d,其中D是x 2 y 2 2x所圍成的區域,過程詳細點謝謝

baid根號 du x 2 y zhi2 d 2 0,dao 2 d 版 0,2cos r 權2dr 2 0,2 1 3 2cos 3d 16 3 0,2 cos 3d 16 3 2 3 32 9 計算二重積分 d x 2 y 2 x dxdy,其中d由x 2,y 2x,y x圍城的閉區域?x 2 ...