1樓:匿名使用者
^由limf(x)/x=0得f'(0)=0ln[1+f(x)/x]~x(x->0)
limln(1+f(x)/x)^(1/x)=limln[1+f(x)/x]/x=limf(x)/x^2=limf'(x)/2x=f''(0)/2=2
原式=e^2
設f(x)有二階導數,在x=0的某去心鄰域內f(x)≠0,且lim f(x)/x=0,f'(0)=4,求lim (1+f(x)/x)^(1/x)
2樓:匿名使用者
題目有錯,f '(0)不可能是4的,由於lim f(x)/x=0,因此f '(0)=0
將你題目中f '(0)=4改為f ''(0)=4因此最後結果極限是e²
【數學之美】團隊為您解答,若有不懂請追問,如果解決問題請點下面的「選為滿意答案」。
設f(x)在x=0的某一鄰域內具有二階連續導數,且lim(x→0)f(x)/x=0,證明級數f
3樓:小六的煩惱
f ′ (a)=0,f ′′ (a)≠0 只是f(x) 在x=a 處取極值的充分條件,非必要條件.
比如f(x)=x^4 ,有f ′ (0)=f ′′ (0)=0 但在 x=0 處顯然是取極小值.
就這題而言:
因lim(x→0) f ′′ (x) / |x| =1 ,由區域性保號性有,
存在一去心鄰域u° (0,δ) ,使得對在這個去心鄰域內有 f ′′ (x) / |x| > 1 / 2
所以有f ′′ (x)> |x| / 2 >0 ,而由連續性有f ′′ (0)=0
去是,在鄰域u°(0,δ) 內有f ′′ (x)≥0 ,且只x=0 處f ′′ (x)=0
於是f ′′ (x) 在鄰域u°(0,δ) 內嚴格單增
於是在該鄰域內有xf ′ (0)=0 ,
導數是由負變正,所以取極小值.
已知f(x)在x=0的某個鄰域內連續,且limx->0f(x)/1-cosx=2,則在x=0處f(x)?
4樓:小小芝麻大大夢
limx->0f(x)/(1-cosx)=2。
∵x->0分母1-cosx→0。
極限=2,f(0)→0。
洛必達法則:
lim(x->0)f(x)/(1-cosx)=lim(x->0)f'(0)/sin0,分母依舊為0,極限存在,f'(0)=0。
繼續求導:=lim(x->0)f''(0)/cos0=2。
∴f''(0)=2>0。
∴f(0)=0為極小值。
5樓:人生如戲
前面直接用洛必達的不對,因為題目沒有提到且沒辦法推出f(x)在x=0的某鄰域內可導,只是在某鄰域內連續而已。本題主要通過函式連續的定義、導數定義、函式極限的保號性、極值定義求解。注意判定極值的時候,不能用極值的三個充分條件判定,因為他們的前提都是在x0的某鄰域內可導。
6樓:星丶
由於1-cosx在x=0的左鄰域與右鄰域內都有limx→0 1-cosx>0 由保號性與連續性可知鄰域內的點有limx→0 f(x)=f(x)>0=f(0) 即f(0)是極小值點
由極小值的定義如下:一般地,設函式f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函式f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。
看了他們的答案好像都用到了導數,實際這題考察的是極值的原始定義
7樓:低言淺唱情詩
證明:由(x→0)limg(x)/x=-1 (極限為-1,分母趨於0,則分子必趨於0)
可知(x→0)limg(x)=0 即g(0)=0於是(x→0)lim[g(x)-g(0)]/(x-0)=-1則g(x)在該鄰域內可導且g'(0)=-1(x→0)limf(x)/g²(x)=2
因為(x→0)limg²(x)=0
則(x→0)limf(x)=0
f(0)=0
對(x→0)limf(x)/g²(x)=2進行變形(x→0)limf(x)/g²(x)
=(x→0)lim[f(x)/x][x²/g(x)]=(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (變成兩個極限之積,並對右邊的極限用洛必達法則)
=(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)
=(x→0)lim[f(x)/x²]•(-1)•(-1)=2因此f(x)=2x²+o(x)
於是可以得到(x→0)limf(x)/x=0即f'(0)=0
8樓:匿名使用者
前面所bai
有用洛必達的也真是不du
怕誤人子弟啊。
zhi。這題考的是定義啊,偏偏dao正版
確答案放在了最下面。
連續卻未告權知可導,洛洛洛,泰勒都要哭了誒。下面答案中有用定義做的建議提到推薦答案,答案中1-cosx用了泰勒近似1/2x^2+o(x^2)
9樓:緊抱著大神腿
首先 有f(0) = 0; 等價來無窮小 1-cosx ~1/2x2
lim x->0 (f(x)-f(0))/(x-0) = lim x->0 x * f(x)/x2 = 0 所以f'(0) = 0;
lim x->0 ((f(x)-f(0))/(x-0) -f'(0))/(x-0) = f''(x) = lim x->0 f(x) /x2 =1>0;
顯然自因為bai f'(0) = 0; f''(0)>0。所以在x=0處有極小值du!
純手打,有bug的地
zhi方請提出,水平有限有dao誤地方請見諒 謝謝!
「在x=0的某鄰域內f(x)二階導數存在」和「在x=0的去心鄰域內f''(x)存在」 10
10樓:煙雨夢
二階導只能說明二階導在x等於零處存在
不能判斷二階導在x等於零的某去心領域內是否存在
11樓:匿名使用者
不一樣,前者說明x=0的二階導也存在,後者不能保證x=0二階導存在
設f(x)在x=0的某鄰域內二階連續可導,且f′(0)=0,limx→0xf″(x)1?cosx=1,則( )a.f″(0)≠
12樓:御風踏飛燕
因為lim
x→0xf″(x)
1?cosx
=1≠0
,所以lim
x→0f″(x)=0
.又因為f(x)在x=0的某鄰域內有二階連續導數,於是f″(0)=lim
x→0f″(x)=0.
因為lim
x→0xf″(x)
1?cosx
=1>0,
根據極限的保號性,
在x=0的某去心鄰域內必然有xf″(x)>0,即f″(x)在x=0兩側變號,
於是(0,f(0))為曲線的拐點.
綜上,f″(0)=0,(0,f(0))為曲線的拐點.故選:c.
設f(x)在x=0的鄰域內具有二階導數,且lim(x趨於0)(1+x+f(x)/x)^(1/x)=
13樓:匿名使用者
(1)e³=e^limln(1+x+f(x)/x)/x極限存在,故
f(0)=0,limf(x)/x=0故f'(0)=03=lim(x+f(x)/x)/x=lim1+f(x)/x²,故f''(0)=4
(2)=e^limln(1+f(x)/x)/x=e^limf(x)/x²=e^2
設f(x)在x=x0的某鄰域有定義,在x=x0的某去心鄰域內可導. 10
14樓:匿名使用者
f(x)在x=x0的某去心領域內可導,說明他在x=x0就不連續;然後選項又給出條件f'(x0)=a,就說明f(x)在x=x0也連續了,但並不能說明導函式f'(x)在x=x0也連續,這樣就不能說導函式f'(x)在x=x0的極限一定存在且等於函式值a。
15樓:9武
設f(x)在x=x0的某
鄰域有定義,在x=x0的某去心鄰域內可導:
極限值lim(x0趨於0)f'(x)=a,的條件是f(x)在x=x0處連續,如果他是一個跳躍的函式,就是說在x=x0處函式值斷開取了別的值那麼就不成立了.
16樓:老子津門第一
可導必連續
,但並不代表連續的情況下,當x值變化了△x時,y的值不會突變。例如sin1/x,當他在x->0時,畫一下影象你就會發現,影象在-1~1間來回跳躍,而x只變化了很小的一個△x的值,但此函式是連續的無疑,所以此函式在趨近於0處的導數值一直在變化且變化很快
17樓:會飛の水泥
李王全書的題?
我感覺他那個題是錯的,可導不是已經連續了嗎?,但是他給的分析是 f(x)在x=x0處不一定連續。。。我也搞不懂這個問題,要是你懂了教教我好嗎?
18樓:匿名使用者
你所說的情況的確滿足了洛必達法則的前兩個條件,但不滿足第三條:上下求導後的值是存在的數a或者無窮大,而你說的情況下求導後可能是cos(1/x)那麼這種情況就不能使用洛必達法則
19樓:匿名使用者
你可以這麼理解,x0的某鄰域內可導,說明除xo這一點外其他點均連續
20樓:風痕雲跡
洛必達條件之一是 lim(x趨於x0)f'(x)存在, 而題中 要證明 不但 lim(x趨於x0)f'(x)存在,而且 =a。
所以不滿足 洛必達法則的條件,不能用洛必達法則來證明。
結論不成立。反例:
f(x)= x^2 sing(1/x^2), x 不=0f(0)=0
函式在x0=0處, f'(0)=0, 但 lim(x趨於0)f'(x)不存在。
大一高數題 函式f(x)在x0的某一去心鄰域內無界是limx→x0 f(x)=無窮 的
21樓:我是一個麻瓜啊
必要但不充分條件
如果趨於無窮,在那領域無界是顯然的。現在找一個在0點某鄰域無界,但不為無窮的例子.考慮 f(x)= 1/x*sin(1/x),在x→0時,取 an= 1/(2nπ),得到f(an)=0,說明有子列收斂於0。
取 bn = 1/(2nπ+π/2),得到f(bn)= 2nπ+π/2,說明有子列趨向無窮,所以無界.,但兩個子例並不全趨無窮,x→0時,不是無窮大。
fx在x0三階可導推得出fx去心鄰域二階可導和二階
答 你的懷疑沒有錯,這種說法是有問題的,根據二階可導,最多隻能推出一階在x 0處連續,二階可導,不能推出二階在x 0處連續!因為 若要f x 在x x0處連續,必須滿足 1 lim x x0 f x lim x x0 f x 2 f x0 有意義 3 lim x x0 f x f x0 而題設中,只...
設函式fx在xx0處二階導數存在,且fx
注意 中國大陸數學界某些機構關於函式凹凸性定義和國外的定義是相反的。convex function在某些中國大陸的數學書中指凹函式。concave function指凸函式。但在中國大陸涉及經濟學的很多書中,凹凸性的提法和其他國家的提法是一致的,也就是和數學教材是反的。舉個例子,同濟大學高等數學教材...
設fx在上有二階導數,且fx0,證明
f x a 2 原命題等價於證f x x a f x f a 0g f x x a f x f a a x bg f x x a f x f x f x x a 0 可見g為增函式內,g g a 0 即f x x a f x f a 0 a。容 因f x 在閉區間 a,b 上二抄階可導 襲,則原函式...