1樓:高中數學
1。偶函式;
2。非奇非偶函式;
3。奇函式;
判斷函式的奇偶性要用定義來判斷。
1。要先判斷定義域是否關於原點對稱,如果關於原點不對稱,則非奇非偶函式;如果關於原點對稱,則進行第2點;
2。如果f(-x)=f(x),則函式是偶函式,如果f(-x)=-f(x),則函式是奇函式;
這三個函式定義域都是r,關於原點對稱;
1。f(-x)=3-5(-x)^2=3-5x^2=f(x),所以函式是偶函式;
2。g(-x)=2(-x)^2-(-x)+1=2x^2+x+1≠g(x)(≠-g(x)),所以函式是非奇非偶函式;
3。f(-x)=(-x)((-x)^2+1)=-x(x^2+1)=-f(x),所以函式是奇函式;
2樓:我還在追尋
f(-x)=3-5x² f(x)=f(-x) 偶函式
g(-x)=2x²+x+1 -g(x)= -2x²+x-1 都不相等,不是奇函式也不是偶函式
f(-x)=-x(x²+1) -f(x)= -x(x²+1) f(-x)=-f(x) 奇函式
3樓:匿名使用者
首先定義域都是無窮
1)f(-x)=3-5(-x)^2==3-5x^2=f(x) 偶函式
2)g(-x)=2(-x)^2-(-x)+1=2x^2+x+1 不等於g(-x)或-g(x),非奇非偶
3)f(-x)=(-x)[(-x)^2+1]=-x(x^2+1)=-f(x) 奇函式
判斷函式奇偶性最好的方法
4樓:angela韓雪倩
判定奇偶性四法:
(1)定義法
用定義來判斷函式奇偶性,是主要方法 . 首先求出函式的定義域,觀察驗證是否關於原點對稱. 其次化簡函式式,然後計算f(-x),最後根據f(-x)與f(x)之間的關係,確定f(x)的奇偶性.
(2)用必要條件.
具有奇偶性函式的定義域必關於原點對稱,這是函式具有奇偶性的必要條件.
例如,函式y=的定義域(-∞,1)∪(1,+∞),定義域關於原點不對稱,所以這個函式不具有奇偶性.
(3)用對稱性.
若f(x)的圖象關於原點對稱,則 f(x)是奇函式.
若f(x)的圖象關於y軸對稱,則 f(x)是偶函式.
(4)用函式運算.
如果f(x)、g(x)是定義在d上的奇函式,那麼在d上,f(x)+g(x)是奇函式,f(x)•g(x)是偶函式. 簡單地,「奇+奇=奇,奇×奇=偶」.
類似地,「偶±偶=偶,偶×偶=偶,奇×偶=奇」.
擴充套件資料:
奇函式在其對稱區間[a,b]和[-b,-a]上具有相同的單調性,即已知是奇函式,它在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上也是增函式(減函式);偶函式在其對稱區間[a,b]和[-b,-a]上具有相反的單調性。
即已知是偶函式且在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上是減函式(增函式)。但由單調性不能倒導其奇偶性。驗證奇偶性的前提要求函式的定義域必須關於原點對稱。
說明:①奇、偶性是函式的整體性質,對整個定義域而言。
②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不具有奇偶性。
③判斷或證明函式是否具有奇偶性的根據是定義。
偶函式:若對於定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)稱為偶函式。
奇函式:若對於定義域內的任意一個x,都有f(-x)=-f(x),那麼f(x)稱為奇函式。
定理奇函式的影象關於原點成中心對稱圖表,偶函式的圖象關於y軸成軸對稱圖形。
f(x)為奇函式《==》f(x)的影象關於原點對稱
點(x,y)→(-x,-y)
奇函式在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。
偶函式在某一區間上單調遞增,則在它的對稱區間上單調遞減。
性質:1、大部分偶函式沒有反函式(因為大部分偶函式在整個定義域內非單調函式)。
2、偶函式在定義域內關於y軸對稱的兩個區間上單調性相反,奇函式在定義域內關於原點對稱的兩個區間上單調性相同。
3、奇±奇=奇(可能為既奇又偶函式) 偶±偶=偶(可能為既奇又偶函式) 奇x奇=偶 偶x偶=偶 奇x偶=奇(兩函式定義域要關於原點對稱).
4、對於f(x)=f[g(x)]:
若g(x)是偶函式且f(x)是偶函式,則f[x]是偶函式。
若g(x) 是偶函式且f(x)是奇函式,則f[x]是偶函式。
若g(x)是奇函式且f(x)是奇函式,則f[x]是奇函式。
若g(x)是奇函式且f(x)是偶函式,則f[x]是偶函式。
5、奇函式與偶函式的定義域必須關於原點對稱。
5樓:匿名使用者
看定義域是否對稱,
觀式子,
看影象,
代數方法
6樓:木華黎
判斷較複雜函式的奇偶性
怎麼求函式奇偶性啊,詳細一點的步驟
7樓:行走無去
第一步:先求定義域(因為只有定義域滿足關於原點對稱才有可能談奇偶性)對x+√(1+x^2)
當x≥0時,顯然滿足x+√(1+x^2)>0當x<0時原式=-√(x平方)+√(1+x^2)>0第二步:求f(-x)(因為不論是奇是偶都要用到與它的比較)設y=f(x)
則f(-x)=ln[x+√(1+x^2)]顯然不是偶函式
又 -f(x)=-ln[x+√(1+x^2)] =ln=……=f(-x)
所以原函式是一個奇函式
-ln[x+√(1+x^2)] =ln
就是前面的係數實際上可以換成對數的指數
隨後分母有理化
8樓:韋元斐黨癸
f(x)=
-f(x+3/2)
那麼,f(x+3/2)=
-f【(x+3/2)+3/2】=
-f(x+3)
∴f(x)=
f(x+3)
∴f(x)是以3為週期的周期函式
f(2015)
=f(2+3×671)
=f(2)=3
填「3」
希望你能採納,不懂可追問。謝謝。
判斷函式的奇偶性,判斷函式奇偶性最好的方法
你要先判斷他是不是奇偶函式,就是看他的定義域對不對稱。像定義域 0,4 就不對稱。1,0 u 0,1 和 1,1 這兩個定義域就是對稱的。你這個函式的定義域是 負無窮,0 u 0,正無窮 是對稱的,就可以判斷他的奇偶性了。因為f x f x 所以他是奇函式。當然如果你函式是x x 2再加1的話,f ...
函式與原函式的奇偶性,函式與原函式的奇偶性
1 f x 是奇函式 f x 0 x f t dt f x 0 x f t dt letu t du dt t 0,u 0 t x,u x f x 0 x f t dt 0 x f u du 0 x f u du f x f x 是偶函式 g x a x f t dt 0 x f t dt 0 a ...
函式的奇偶性性質,詳細點,函式的奇偶性性質是什麼?
函式的奇偶性 整體性質 1 偶函式 一般地,對於函式f x 的定義域內的任意一個x,都有f x f x 那麼f x 就叫做偶函式 2 奇函式 一般地,對於函式f x 的定義域內的任意一個x,都有f x f x 那麼f x 就叫做奇函式 3 具有奇偶性的函式的圖象的特徵 偶函式的圖象關於y軸對稱 奇函...