求三角函式公式大全

2021-12-19 11:21:53 字數 5234 閱讀 3553

1樓:百度

正弦函式 sinθ=y/r 餘弦函式 cosθ=x/r 正切函式 tanθ=y/x

餘切函式 cotθ=x/y 正割函式 secθ=r/x 餘割函式 cscθ=r/y

sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α

積的 sinα=tanα×cosα cosα=cotα×sinα

tanα=sinα×secα cotα=cosα×cscα

secα=tanα×cscα cscα=secα×cotα

關係倒數關係 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1

商的關係 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα

直角三角形abc中, 角a的正弦值就等於角a的對邊比斜邊,餘弦等於角a的鄰邊比斜邊,正切等於對邊比鄰邊,

·[1]三角函式恆等變形公式

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函式:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

asinα+bcosα=(a²+b²)^(1/2)sin(α+t),其中

sint=b/(a²+b²)^(1/2)

cost=a/(a²+b²)^(1/2)

tant=b/a

asinα-bcosα=(a²+b²)^(1/2)cos(α-t),tant=a/b

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

tan(2α)=2tanα/[1-tan²(α)]

·三倍角公式:

sin(3α)=3sinα-4sin³(α)

cos(3α)=4cos³(α)-3cosα

·半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin²(α)=(1-cos(2α))/2=versin(2α)/2

cos²(α)=(1+cos(2α))/2=covers(2α)/2

tan²(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan²(α/2)]

cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

tanα=2tan(α/2)/[1-tan²(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos²α

1-cos2α=2sin²α

1+sinα=(sinα/2+cosα/2)²

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

證明:左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右邊

等式得證

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

證明:左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊

等式得證

三角函式的誘導公式

公式一:

設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

正弦定理是指在三角形中,各邊和它所對的角的正弦的比相等,即a/sina=b/sinb=c/sinc=2r .

餘弦定理是指三角形中任何一邊的平方等於其它兩邊的平方和減去這兩邊與它們夾角的餘弦的積的2倍,即a^2=b^2+c^2-2bc cosa

角a的對邊於斜邊的比叫做角a的正弦,記作sina,即sina=角a的對邊/斜邊

斜邊與鄰邊夾角a

sin=y/r

無論y>x或y≤x

無論a多大多小可以任意大小

正弦的最大值為1 最小值為-

2樓:匿名使用者

倒數關係: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的關係: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方關係:

sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)

平常針對不同條件的常用的兩個公式

sin² α+cos² α=1 tan α *cot α=1

一個特殊公式

(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 證明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)

銳角三角函式公式

正弦: sin α=∠α的對邊/∠α 的斜邊 餘弦:cos α=∠α的鄰邊/∠α的斜邊 正切:

tan α=∠α的對邊/∠α的鄰邊 餘切:cot α=∠α的鄰邊/∠α的對邊

二倍角公式

正弦 sin2a=2sina·cosa 餘弦 1.cos2a=cos^2(a)-sin^2(a) =2cos^2(a)-1 =1-2sin^2(a) 2.cos2a=1-2sin^2(a) 3.

cos2a=2cos^2(a)-1 正切 tan2a=(2tana)/(1-tan^2(a))

三角函式公式,三角函式公式大全

同角三角函式的基本關係 倒數關係 tan cot 1 sin csc 1 cos sec 1 商的關係 sin cos tan sec csc cos sin cot csc sec 平方關係 sin 2 cos 2 1 1 tan 2 sec 2 1 cot 2 csc 2 平常針對不同條件的常用...

所有三角函式,三角函式公式大全

一 倍角公式 1 sin2a 2sina cosa 2 cos2a cosa 2 sina 2 1 2sina 2 2cosa 2 1 3 tan2a 2tana 1 tana 2 注 sina 2 是sina的平方 sin2 a 二 降冪公式 1 sin 2 1 cos 2 2 versin 2 ...

三角函式公式大全有木有,三角函式公式

三角函式公式 一 誘導公式。口訣 分子 奇變偶不變,符號看象限。k?360 sin cos k?360 cos atan k?360 tan 2.sin 180 sin cos 180 cosa cos a cos 4 tan 180 tan tan tan cos 180 cos cos 360 ...