所有三角函式,三角函式公式大全

2021-05-02 20:11:17 字數 7867 閱讀 6657

1樓:阿離

^一、倍角公式

1、sin2a=2sina*cosa

2、cos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1

3、tan2a=(2tana)/(1-tana^2)(注:sina^2 是sina的平方 sin2(a) )

二、降冪公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

三、推導公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

四、兩角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

五、和差化積

1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

5、tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb)

六、積化和差

1、sinαsinβ = [cos(α-β)-cos(α+β)] /2

2、sinαcosβ = [sin(α+β)+sin(α-β)]/2

3、cosαsinβ = [sin(α+β)-sin(α-β)]/2

七、誘導公式

1、(-α) = -sinα、cos(-α) = cosα

2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα

3、3cos(π/2+α) = -sinα

4、(π-α) = sinα、cos(π-α) = -cosα

5、5tana= sina/cosa、tan(π/2+α)=-cotα、tan(π/2-α)=cotα

6、tan(π-α)=-tanα、tan(π+α)=tanα

八、銳角三角函式公式

1、sin α=∠α的對邊 / 斜邊

2、α=∠α的鄰邊 / 斜邊

3、tan α=∠α的對邊 / ∠α的鄰邊

4、cot α=∠α的鄰邊 / ∠α的對邊

2樓:李快來

兩角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota)

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2a=2sina*cosa

半形公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) 

tan(a/2)=(1-cosa)/sina=sina/(1+cosa)

和差化積

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b) )

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2)

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

積化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

誘導公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a) pi=3.1415926....

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tga=tana=sina/cosa

萬能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重點三角函式

csc(a)=1/sin(a)

sec(a)=1/cos(a)

餘弦定理可表示為:

正弦定理可表示為:

朋友,請採納正確答案,你們只提問,不採納正確答案,回答都沒有勁!!!

朋友,請【採納答案】,您的採納是我答題的動力,如果沒有明白,請追問。謝謝。

3樓:景煊承恩霈

^^平方關係

sin^2(α)

cos^2(α)=1

cos(2a)=cos^2(a)-sin^2(a)=1-

2sin^2(a)=2cos^2(a)-1

sin(2a)=2sin(a)cos(a)

tan^2(α)

1=1/cos^2(α)

2sin^2(a)=1-cos(2a)

cot^2(α)

1=1/sin^2(a)

積的關係

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

倒數關係

tanα

·cotα=1

sinα

·cscα=1

cosα

·secα=1

商的關係

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

sinβ

cosβ

tanβ

cotβ

secβ

cscβ

360°k

αsinα

cosα

tanα

cotα

secα

cscα

90°-α

cosα

sinα

cotα

tanα

cscα

secα

90°α

cosα

-sinα

-cotα

-tanα

-cscα

secα

180°-α

sinα

-cosα

-tanα

-cotα

-secα

cscα

180°

α-sinα

-cosα

tanα

cotα

-secα

-cscα

270°-α

-cosα

-sinα

cotα

tanα

-cscα

-secα

270°

α-cosα

sinα

-cotα

-tanα

cscα

-secα

360°-α

-sinα

cosα

-tanα

-cotα

secα

-cscα

﹣α-sinα

cosα

-tanα

-cotα

secα

-cscα

兩角和與差的三角函式

cos(α

β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ

sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α

β)=(tanα

tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1

tanα·tanβ)

和差化積

公式sinα

sinβ=2sin[(α

β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α

β)/2]sin[(α-β)/2]

cosα

cosβ=2cos[(α

β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α

β)/2]sin[(α-β)/2]

積化和差公式

sinα·cosβ=(1/2)[sin(α

β)sin(α-β)]

cosα·sinβ=(1/2)[sin(α

β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α

β)cos(α-β)]

sinα·sinβ=-(1/2)[cos(α

β)-cos(α-β)]

倍角公式

sin(2α)=2sinα·cosα=2/(tanα

cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

三倍角公式

sin(3α)

=3sinα-4sin^3α

=4sinα·sin(60°

α)sin(60°-α)

cos(3α)

=4cos^3α-3cosα

=4cosα·cos(60°

α)cos(60°-α)

tan(3α)

=(3tanα-tan^3α)/(1-3tan^2α)

=tanαtan(π/3

α)tan(π/3-α)

cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

n倍角公式

sin(nα)=ncos^(n-1)α·sinα-c(n,3)cos^(n-3)α·sin^3α

c(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-c(n,2)cos^(n-2)α·sin^2α

c(n,4)cos^(n-4)α·sin^4α-…

半形公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1

cosα)/2)

tan(α/2)=±√((1-cosα)/(1

cosα))=sinα/(1

cosα)=(1-cosα)/sinα

cot(α/2)=±√((1

cosα)/(1-cosα))=(1

cosα)/sinα=sinα/(1-cosα)

sec(α/2)=±√((2secα/(secα

1))csc(α/2)=±√((2secα/(secα-1))

輔助角公式

asinα

bcosα=√(a^2

b^2)sin(α

φ)(tanφ=b/a)

asinα

bcosα=√(a^2

b^2)cos(α-φ)(tanφ=a/b)

萬能公式

sin(a)=

(2tan(a/2))/(1

tan^2(a/2))

cos(a)=

(1-tan^2(a/2))/(1

tan^2(a/2))

tan(a)=

(2tan(a/2))/(1-tan^2(a/2))

降冪公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1

cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1

cos(2α))

三角和的三角函式

sin(α

βγ)=sinα·cosβ·cosγ

cosα·sinβ·cosγ

cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α

βγ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α

βγ)=(tanα

tanβ

tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

其它公式

1sin(a)=(sin(a/2)

cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

csc(a)=1/sin(a)

sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

推導公式

tanα

cotα=2/sin2α

tanα-cotα=-2cot2α

1cos2α=2cos^2α

1-cos2α=2sin^2α

1sinα=[sin(α/2)

cos(α/2)]^2

三角函式公式,三角函式公式大全

同角三角函式的基本關係 倒數關係 tan cot 1 sin csc 1 cos sec 1 商的關係 sin cos tan sec csc cos sin cot csc sec 平方關係 sin 2 cos 2 1 1 tan 2 sec 2 1 cot 2 csc 2 平常針對不同條件的常用...

三角函式公式大全有木有,三角函式公式

三角函式公式 一 誘導公式。口訣 分子 奇變偶不變,符號看象限。k?360 sin cos k?360 cos atan k?360 tan 2.sin 180 sin cos 180 cosa cos a cos 4 tan 180 tan tan tan cos 180 cos cos 360 ...

三角函式的轉化公式,三角函式的轉換公式

sin sin cos cos sin 2 cos cos 2 sin sin 2 cos cos 2 sin sin sin cos cos sin sin cos cos tana sina cosa tan 2 cot tan 2 cot tan tan tan tan 三角函式化簡與求值時需...