1樓:匿名使用者
正弦函式的單調區間,第
四、一象限是單調遞增的;第
二、三象限是單調減函式
所以2sin(π/4 -x)=-2sin(x-π/4)1、x-π/4 ∈【2kπ-π/2,2kπ+π/2】是單調減函式了(因為前面有負號,就正好相反了)
所以,x∈【2kπ-π/4,2kπ+3π/4】是單調減函式2、x-π/4 ∈【2kπ+π/2,2kπ+3π/2】是單調增函式所以,x∈【2kπ+3π/4,2kπ+7π/4】是單調增函式y=cos²x+2sinx-2
=1-sin²x-2sinx-2
=-sin²x-2sinx-1
=-(sinx+1)²
y∈[-4,0]
2樓:叫你再宕機啊拉
(1)∵sin x=sin (-x)
單調區間:(-π/4+2kπ,3π/4+2kπ) k∈z(2)∵y=cos²x+2sinx-2=1-sin²x-2sinx-2=-sin²x-2sinx-1=-(sinx+1)²
sin x∈[-1,1]
∴y∈[-4,0]
不要亂來!!
區間只能由小到大!!
[a,b]中a<b
高一數學練習題
3樓:關冬靈環厚
1. 本質即,f(x)-x=0時有兩個根x1,x2,且x1+x2=0
f(x)-x=0可化為
2x^2+bx+a=0(x不等於零)所以
由韋達定理,b=0,a<0.
2.由題意,f(0)=0,所以0必為一不動點
若f(x)還有其他的不動點(m,m),即存在f(m)=m,由f(x)=-f(-x),必有
f(-m)=-f[-(-m)]=-f(m)=-m,所以(-m,-m)也必為f(x)的不動點,所以設除0外f(x)有
a(a為自然數)個大於零的不動點,則必有a個小於零的不動點,共有2a+1個,即奇數個。
類似奇函式的推導,可知偶函式不定,如偶函式f(x)=x^2
有且僅有(0,0),(1,1)這兩個不動點,而偶函式f(x)=(1/2)[x^2+1]就只有(1,1)一個不動點。
4樓:k12佳音老師
回答您好,請把**發給我看看
提問我九題
回答第九題
f(5)因為5<10
所以代入第二個式子
結果為f(10)
因為10等於10
所以代入第一個式子
10+5=15
提問我天原來如此,老師在教我一道題行不
第十題回答
我看看提問
好,感謝✖️9999
回答奇函式定義f(-x)=-f(x)
然後按照定義這麼一算就出來啦
更多17條
5樓:厚憐雲賴頌
這個題要知道從哪入手
你要知道實際上求的是f(a²-2)<—f(a)但因為fx是奇函式所以就是f(a²-2)<f(—a)因為當x≥0時,f(x)=x²+4x是單調遞增函式且已知f(x)在r上為奇函式
∴f(x)在r上為單調遞增奇函式
∴要使f(a²-2)<f(—a)就要a²-2<—a∴就可以解出a了-2<a<1
6樓:恭奧功昊磊
第一題:因為f(x+1)=(x+1)方-2(x+1)+1所以f(x)=x方-2x+1=(x-1)方
第二題:(1)f(x)=3x+1,x和f(x)的定義域都是r(2):f(x)=x絕對值加1,x定義域為r,f(x)定義域為大於等於1的r
(3):f(x)=1/x
x定義域為不為0的r
,f(x)定義域為r
(4):f(x)=根號x
x和f(x)定義域皆為大於等於0
分都給我,新註冊的吧,你不用這個了,拜我為師。
7樓:似彭越禰正
1.作a關於x軸對稱,連線ab交直線l於p,可求p。
2.將(√x)+y-2-2√3=0化為x=(-y+2+2√3)^2這是拋物線,然後畫圖求解。
有問題可問!!
8樓:崔心蒼從靈
已知函式f(x)=asin2x+cos2x,且f(3/π)=2/√3-1
(求)a的值和f(x)的最大值;(2)問f(x)在什麼區間上是減函式已知f(x)=asin2x+cos2x且f(π/3)=(√3-1)/2
(√3-1)/2=asin(2π/3)+cos(2π/3)√3-1/2=a*√3/2-1/2
a=2y=f(x)=2sin2x+cos2xy-2sin2x=cos2x=√[1-(sin2x)^2]y^2+4(sin2x)^2-4y*sin2x=1-(sin2x)^2
5(sin2x)^2-4y*sin2x+y^2-1=0上方程未知數為(sin2x)的判別式△≥0,即(4y)^2-4*5*(y^2-1)≥0
y^2≤5
-√5≤y≤√5
答:a=2,f(x)最大值=√5
9樓:匿名使用者
最好問老師哦 老師知道的題目多一點! 那些東西很簡單的啊不用可以去看 明白嗎/
高一數學題(必修一)
10樓:匿名使用者
2lg(x-2y)=lgx+lgy
lg(x-2y)^2=lgxy
(x-2y)^2=xy>0
x^2-5xy+4y^2=0
(x-y)(x-4y)=0
x=y(代入不合x-2y>0),x=4y
x/y=4選b
11樓:匿名使用者
2lg(x-2y)=lg(x-2y)^2,lgx+lgy=lgxy。
所以(x-2y)^2=xy,即x^2+4y^2=5xy。兩邊同時除以xy,得x/y+4y/x=5.
令x/y=t,則t+4/t=5.得t=1或t=4.
t=1得x=y,帶入lg(x-2y)得lg(-x)。則x<0,與lgx(x>0)不符,所以x/y=4.
12樓:yicun已被搶注
lg(x-2y)²=lg(xy)
(x-2y)²=xy
x²-4xy+4y²=xy
x²-5xy+4y²=0
兩邊同時除以y²
(x/y)²-5x/y+4=0
(x/y-1)(x/y-4)=0
x/y=1或x/y=4
因為x>0,y>0,x-2y>0
x/y=4
13樓:普翼煙清昶
首先1.f(x)=x的平方-2ax-1應該先看看其頂點橫座標{其頂點橫座標用f(c)表示}是否屬於{0.2}如果是f(c)是最大值
然後再比較f(0)和f(2)就能確定最小值瞭如果不屬於則{0.2}是f(x)的單調區間只需比較f(0)和f(2)的大小即可決定最大或最小值
高一數學題
14樓:夢見
那個選擇題應該d吧,因為你可以把y=2的負x次方影象和y=lgx的影象在座標系中畫出來,它們兩條線的交點肯定在第一象限,且x,y的範圍在(0,1)之間,所以說函式的兩個根x1,x2,的取值範圍肯定在0到1之間,故兩個根的積也在0到1之間。
15樓:匿名使用者
高一數學題?
16樓:匿名使用者
因為是奇函式,所以定義域關於原點對稱,即 a-1 + 2a+5 = 0 a=-4/3
因為是偶函式,即對稱軸是y軸,所以a+1= 0 , a=-1
f(x)=4x^2 -1
負無窮到0, 減函式, 0到正無窮增函式。
一次函式是奇函式,說明該函式過原點,即f(0)=a =0, f(x)=3x
負無窮到正無窮 增函式
f(x)=ax^3 + bx -3 f(-1) = -a - b -3 = 2 => a+b = -5
f(2) = 8a + 2b -3 這道題目少條件,求不了。
另外f(1) = a+ b -3 = -5 - 3 = - 8
f(3) = 3^4 a + 3^2 b - 2*3 = 1 => 3^4 a + 3^2 b = 1 + 6 = 7
f(-3) = 3^4 a + 3^2 b + 2 *3 = 7 + 6 = 13.
17樓:王老師
回答請問是什麼題呢?
提問回答
好的,請稍等哈~
提問謝謝謝謝
更多4條
18樓:匿名使用者
因為函式表示式為:y=(ax+b)/(x+c)².............①
從函式影象看:m點的座標為(0,m);其中m>0;將x=0代入①式,即得:m=b/c²>0;
n點的座標為(n,0);其中n>0;將y=0代入①式得:0=(am+b)/(m+c)²;故由am+b=0
得m=-b/a>0;
高一數學題目
19樓:感悟睿智人生
「求a,c的大小」,一看結論,便知此題烏龍。
高中數學題,弄懂了一道不會的題目如何歸納總結
20樓:匿名使用者
專門一個本子,記錄下來,重點是寫下解題的思路,而不是解題的過程,記錄下這道題,我是怎麼一步一步的推匯出正確答案的。從那個角度去破的題。有沒有共通性?
有沒有普遍性。能不能當做一個小公式使用?
21樓:匿名使用者
去找幾個相似的抄下來。總結 共性
求解高一數學題!
22樓:就一水彩筆摩羯
一 題二 題三 題四 題五 搜全網
題目已知函式f(x)=|x+a|+|2x-1|(a∈r).(ⅰ)當a=1時,求不等式f(x)≥2的解集;
(ⅱ)若f(x)≤2x的解集包含[12
,1],求a的取值範圍.
解析(1)通過分類討論,去掉絕對值函式中的絕對值符號,轉化為分段函式,即可求得不等式f(x)>0的解集;
(2)由題意知,不等式可化為|x+a|+2x-1≤2x,即|x+a|≤1,解得-a-1≤x≤-a+1,
由f(x)≤2x的解集包含[12
,1],可得
−a−1≤12
−a+1≥1
,解出即可得到a的取值範圍.
解答(1)當a=1時,不等式f(x)≥2可化為|x+1|+|2x-1|≥2,
①當x≥12
時,不等式為3x≥2,解得x≥23
,故此時不等式f(x)≥2的解集為x≥23;②當-1≤x<12
時,不等式為2-x≥2,解得x≤0,
故此時不等式f(x)≥2的解集為-1≤x<0;
③當x<-1時,不等式為-3x≥2,解得x≤−23,故x<-1;
綜上原不等式的解集為;
(2)因為f(x)≤2x的解集包含[12
,1],
不等式可化為|x+a|+2x-1≤2x,即|x+a|≤1,解得-a-1≤x≤-a+1,
由已知得
−a−1≤12
−a+1≥1
,解得−32
≤a≤0
所以a的取值範圍是[−32
,0].
1g1 1g10 1g10000 高一 數學題等於多少。
23樓:隨風殘敗
lg1=0,lg10=1,lg10000=4,其實就是10的多少次方等於那個數;
24樓:達李不知書
lga其實就是10的多少次方等於a;
1g1=0
1g10 =1
1g10000 =4
25樓:匿名使用者
1g1=0
1g10 =1
1g10000 =4
高一數學題,高一數學練習題
利用lgx lgy lgxy來進行化簡。由於各式均有意義,所以x y 0 左邊 lg x y x 2y lg x 2 xy 2y 2 右邊 lg2xy 所以x 2 xy 2y 2 2xy x 2 xy 2y 2 0 兩邊除y 2,得 x y 2 x y 2 0x y 1 捨去 x y 2 故x y ...
高一數學題,高一數學練習題
1.令 y z 1 yz x1,y z 1 yz x2,因為f x lg 1 x 1 x 所以f x1 lg 1 x1 1 x1 1,f x2 lg 1 x2 1 x2 2 從兩式分別求出x1 9 11,x2 99 101,所以可得 y z 1 yz 9 11 y z 1 yz 99 101 從兩式...
高一數學練習題,高一數學用什麼練習題好求推薦人教版的記住是高一!
1.本質即,f x x 0時有兩個根x1,x2,且x1 x2 0 f x x 0可化為 2x 2 bx a 0 x不等於零 所以 由韋達定理,b 0,a 0.2.由題意,f 0 0,所以0必為一不動點 若f x 還有其他的不動點 m,m 即存在f m m,由f x f x 必有 f m f m f ...