高等數學函式的連續性,高數中函式的連續性有什麼用

2021-03-03 22:26:35 字數 1911 閱讀 9029

1樓:匿名使用者

limf(x) = lim[1-√(1-x)]/x = limx/

= lim1/[1+√(1-x)] = 1/2 = f(0) = a,

a = 1/2

高等數學,函式的連續性

2樓:q1292335420我

一類間斷點,就是函式無定義的孤點,但是緊靠該點兩側,函式值(極限)相同;

其他間斷點,是函式無定義的孤點,緊靠該點兩側,函式值(極限)不同。

(1)分式,分母為0的點,就是間斷點。

y=(x-1)(x+1)/(x-1)(x-2),x=1,x=2是間斷點,但是,如果x≠1,x-1可以約去,y=(x+1)/(x-2),只要補充定義,x=1時,y=(x+1)/(x-2),函式在x=1就是連續的,x=2不可去。

(2)x=kπ時,tanx=0,分母為0,是間斷點,在該點兩側,tanx的值異號,接近於0,倒數之後,分別是±無窮大,不連續,且不可去。

(3)x趨近於0,1/x趨近於±無窮大,cosx的值不確定,因此,不可去。

(4)x從左側趨近於1,y趨近於0,x從右側趨近於1,y趨近於2,不同,不可去。

看左右極限是否相同,是判斷是否可去的基本方法。

3樓:地方讓個地

嘿嘿答案是2 不過謝謝你

高數中函式的連續性有什麼用

4樓:匿名使用者

連續復性是說明函式在某個區

域制內,定義域內的所有值都在這個區域呢,也就是這個函式具有意義。連續性是為了說明函式不間斷。可以用來求極值,比如兩個函式式子用一個花括號括起來,當然就成了一個函式,如果他們的定義域連續,且說他們連續,那麼就知道在他們定義域相交的那個點,數值一定相等。

如果兩個式子中有未知的數字,那麼這樣可以列出一個方程,來解出這個未知的數字。如果未知數字求出來了,就可以進一步比較兩個函式的極值情況如何,從而求出整個大區間內,函式的極值。

當你進入大學後,會用到很多連續性的東西。相當有用,關鍵是理解,如果函式在某個點連續能說明什麼,想到這點,那麼他的作用就很廣了。

高等數學函式的連續性問題 30

5樓:匿名使用者

因為題目讓你討論(-∞,+∞)的情況,所以必須考慮x<0的情形;

又因為x^(2n)=(x^2)^n, 所以只需要考慮|x|的情形就可以了。

討論大於1,小於1,是因為極限的求法不一樣。

以上,希望能夠幫你理解。

6樓:不曾年輕是我

證明:對於任一點x0∈[a, b] 因為

f(x)連續,所以lim(x->x0-) f(x)=lim(x->x0+) f(x)=f(x0) 因為cosx是連續的。所以lim(x->x0-) cosx=lim(x->x0+) cosx=cosx0 所以lim(x->x0-) f(x)cosx=[lim(x->x0-) f(x)] *[lim(x->x0-) cosx]=f(x0)cosx0 lim(x->x0+) f(x)cosx=[lim(x->x0+) f(x)] *[lim(x->x0+) cosx]=f(x0)cosx0 所以lim(x->x0-) f(x)cosx=lim(x->x0+) f(x)cosx=f(x0)cosx0

7樓:海馳巧依絲

由於初等函式在連續的區間內部是連續的,

所以對於f(x)來講,

如果f(x)存在間斷點,那麼肯定實在分段函式臨界的位置,因此只需要考慮±1這兩個點是否連續或者間斷即可。

高數 函式的連續性

8樓:殤害依舊

零點定理寫的就是開區間

9樓:匿名使用者

你寫閉區間也毫無問題,沒什麼講究。

函式可導性與連續性的關係,高數中函式連續性與可導性間的關係

由題意,根據函式可導的定義,有 當 x 0 時,lim y x 的極限存在,為f x 那麼由極限的定義,任取e 0,存在d 0,使得當 x 那麼由上述極限定義可知,任取e 0,存在d 0,使得當 x 即對於無窮小a,有 y x f x a 希望對你有用 高數中函式連續性與可導性間的關係 1 首先 照...

高等數學(同濟五版)定理3複合函式連續性定理中,X0的去心鄰域包含於D f。g ,其

d是domain,定義域。d f.g 代表複合函式f.g的定義域 複合函式極限運演算法則的定理中,內函式為什麼不能等於其極限值?同濟高數六版上 48頁 定理6中的條件 簡稱為 g x u0 的必要性 看這個例子 g x 1 x r f u 為分段函式 當u 1時,f u u 當u 1時,f u 2,...

高數根據函式極限的定義證明,高等數學,用函式極限的定義證明。

證題的步驟基本為 任意給定 0,要使 f x a 0,使當0 x x0 時,有 f x a 0,要使 lnx 1 0,都能找到 0,使當0 x e 時,有 f x 1 即當x趨近於e時,函式f x 有極限1 說明一下 1 取0 x e 是不需要考慮點x e時的函式值,它可以存在也可不存在,可為a也可...