1樓:肉脯蛋卷
垂足為h,
∵a(6,6),
∴oh=6,
∵b(12,o),
∴hb=6,
∴ao=ab,
∵∠man=45゜,
∴∠abo=45°,
∴∠oab=90°,
∴△aob的形狀為等腰直角三角形;
故答案為:等腰直角三角形;
(2)作∠nae=∠nam=45°,使點e與m在an兩側,連線be,ne,使ae=am,
∵∠mae=∠oab=90°,
∴∠bae=∠oam,
∵ab=ao,
∴△bae≌△oam,
∴be=om=3,ne=mn,∠abe=∠aom=45°,∴∠nbe=90°,
∴bn2+be2=ne2,
設bn=x,則ne=mn=ob-om-nb=12-x-3=9-x,∴x2+32=(9-x)2,
∴x=4,
∴on=8,
∴hn=on-oh=8-6=2,
∴an=
ah+hn=+
=210
;(3)連線pm,作mk垂直pn於k,
∵om=oc=3,
∴po垂直平分cm,
∴pc=pm,∠mpo=∠cpo,
∵∠npo=2∠cpo,
∴∠npo=2∠mpo,
∴∠npm=∠mpo,
∴mk=mo=3,
∵s△npm:s△mpo=pn:po,
s△npm:s△mpo=nm:om=5:3,∴pn:po=nm:om=5:3,
設pn=5t,
則po=3t,
則82+(3t)2=(5t)2,
解得:t=2,
則op=6,
則點p為(0,-6).
如圖,在平面直角座標系中有Rt ABC,已知A 90,AB AC,A( 2,0) B(0,1) C(d,21)求d
解 1 作cn x軸於點n。在rt cna和rt aob中 nc oa 2,ac ab rt cna rt aob 則an bo 1,no na ao 3,且點c在第二象限,d 3 考點名稱 全等三角形的性質 全等三角形 兩個全等的三角形,而該兩個三角形的三條邊及三個角都對應地相等。全等三角形是幾何...
如圖,在平面直角座標系中,Rt ABC的斜邊AB在x軸上,頂點C在y軸的負半軸上,tan ABC
解 1 解方程x2 12x 27 0,得x1 3,x2 9,po pc,po 3,p 0,3 2 po 3,pc 9,oc 12,abc aco,tan aco oaoc 34 oa 9,a 9,0 ap oa2 op2 310 3 存在,當cq pa時,直線pa的解析式為 y 1 3x 3,直線c...
矩形OABC在平面直角座標系中位置如圖所示,A C兩點的座標分別為A 6,0 ,C 0, 3 ,直線y
d是直線y 3 4x與bc的交點,可得d的座標為 4,3 2分 2 點a代入,解得拋物線的 表示式為 2分 對稱軸是直線 1分 3 點m的橫座標為3,代入直線求得m 3,1分 對稱軸與x軸交點p1符合,p1 1分 過m作y軸的垂線交y軸於點p2,則p2符合條件,解得p2 0,1分 過m作om的垂線分...