1樓:匿名使用者
結果不同,但只要把你的答案求導後如果和題中被積函式一樣,這就說明你的積分結果和那個結果本質上是一樣的。在正規考試中,一般用你所想到方法解出的結果,命題人都考慮到了。都算正確,只要你的解法正確。
就ok!
2樓:匿名使用者
可以逆向思維,很多函式的導函式是一樣的,比如x和x+1的導函式都是1.所以1的不定積分可以是不同的
請教 定積分和不定積分 存在的條件為什麼不一樣?
3樓:是你找到了我
因為定積分和不定積分是兩個概念,兩者之間沒有聯絡。
若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們在數學上有一個計算關係(牛頓-萊布尼茨公式),其他沒有關係。
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
4樓:
定積分的定義是:先將有界閉區間細分成充分小的子區間;接著將在每個子區間上任取一點的函式值與所在子區間的長度相乘,並把它們都加在一起得到一個和,叫黎曼和;如果區間充分細分後黎曼和有極限,則定積分存在. 可積函式有界, 且不連續點的測度是零!
不定積分是被積函式的原函式; 因此要求被積函式必須是某個可微函式的導數. 這就是定積分與不定積分的區別.
5樓:匿名使用者
誰說f(x)的原函式存在就要求f(x)連續的???胡說八道啊,只要f(x)不存在第一類間斷點,就算不連續也有可能存在原函式定積分的條件也說錯了,有界的情況下就算有無窮個間斷點,只要是無窮可數個就就存在定積分
6樓:匿名使用者
f(x)在區間i中的全體原函式稱為f(x)在區間i中的不定積分。若f(x)存在第一類間斷點的話,它就不存在原函式。所以就要求連續。
7樓:匿名使用者
不定積分是原函式集吧,定積分是所圍面積...我這麼理解,不知道對錯...
8樓:匿名使用者
這兩貨本來就沒什麼關係,名稱誤導人,不過最後被人為聯絡起來罷了。
不定積分解不是唯一的麼
9樓:匿名使用者
很多情況下,copy採用不同的方法,最終得到的不定積分的結果在形式上是不同的。
但是,其差別為某一常量,因此,雖然形式不同,但是可以通過恆等變形互化。
出現結果不同的原因就在於積分常數c,不同的結果形式,其積分常數c的值是不同的。
一般容易錯誤理解為c的值都一樣,其實是不一樣的。
10樓:丿搞笑稽友
是唯一的。
採用不同的方法,雖然得到的不定積分的結果在形式上是不內同的。
但是,其差別容為某一常量,因此,雖然形式不同,但是可以通過恆等變形互化。
不定積分簡介:
在 微積分中,一個函式 f 的 不定積分,或原函式,或反導數,是一個 導數等於 f 的 函式 f ,即 f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中 f是 f的不定積分。
根據 牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。
這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係,其它一點關係都沒有。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。
若只有有限個間斷點,則定積分存在。
若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
11樓:你的眼神唯美
不定積分 結果不唯一求導驗證應該能夠提高湊微分的計算能力。。
為什麼說定積分的值與積分變數無關?
12樓:demon陌
因為只是個符號,其實整個高等數學的基礎是極限,而定積分的最最最基礎就是和的極限。
積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
13樓:數學劉哥
理解到這就夠了,定積分的幾何意義是面積的代數值的和,把曲線分成在x軸上方的部分和在x軸下方的部分,就是曲線在x軸上方的部分的積分是面積,在x軸下方的部分的積分是面積的負值,也就是相反數,然後各部分加在一起就是整個積分了,被積函式的自變數就是積分變數,顯然被積函式的自變數是x還是t都不重要,就是在平面直角座標系裡面橫軸是x軸還是t軸都可以,字母只是代表變化的實數,與用哪個字母表示是無關的
按你說的t=2x是可以計算的,但是積分割槽間必須相應的進行改變,也就是定積分的換元積分法,
其實有另一種理解方法,你可以設x=u,積分割槽間不變,相當於只是改變積分變數是換元積分法的一個特例
14樓:
根據定積分的定義,定積分是函式f(x)在[a,b]上的積分和∑f(ξi)△xi的極限,當所有的△xi都趨向於0時,不過區間[a,b]如何分法,點ξi如何選取,極限都存在且相等,換句話說,極限只與區間[a,b]以及函式f(x)有關,只要區間[a,b]給定了,函式的對應法則給定了,積分就確定了,至於函式的自變數是x還是t等,與積分當然無關了。
也可以結合定積分的幾何意義-曲邊梯形的面積來理解。
不定積分問題,不定積分問題的?
中間的時候令x lnt,因為t 0,因此最後絕對值可以去掉,最後再換回來,望採納 不定積分問題?這可以通過integration by parts得來的來。我這裡簡單做 自其中一個 c1 x e 2x sinx 2 dx e 2x e 2x sinx dx but e 2x sinx dx i 1 ...
不定積分問題,不定積分問題的?
分享一種解法。1 x 1 x 1 x 1 x 設x sin 原式 1 sin sin d 而,1 sin sin sin sin sin cos2 1 2,原式 cos 2 sin2 4 c x 2 1 x 1 x 1 2 arcsinx c。供參考。右邊等號的第二個等號就出現問題了。1 x2 1 ...
不定積分的求法,不定積分求解方法
內容來自使用者 內蒙古冠啟教育資訊諮詢 求不定積分的方法 公式法,分項積分法,因式分解法 湊 微分法 第一換元法 第二換元法,分部微分法,有理函式的積分。方法一 基本公式法 因為積分運算微分運算的逆運算,所以從導數公式可得到相應的積分公式。我們可以利用積分公式來算積分 例題 1.2.3.4.方法二 ...