1樓:匿名使用者
你好!(1)由於
b-a^-1=(a^-1)(ab-i)=-(a^-1)(i-ab)是兩個可逆矩陣
內的乘積,所以可逆;容(2)由於a-b^-1=(ab-i)(b^-1)=-(i-ab)(b^-1)是兩個可逆矩陣的乘積,所以可逆。經濟數學團隊幫你解答,請及時採納。謝謝!
設n階矩陣a和b滿足條件a+b=ab.(1)證明a-e為可逆矩陣(其中e是n階單位矩陣);(2)已知b=1-30210002,
2樓:我是一個麻瓜啊
解答過程如下:
單位矩陣:在矩陣的乘法中,有一種矩陣起著特殊的作用,如同數的乘法中的1,這種矩陣被稱為單位矩陣。它是個方陣,從左上角到右下角的對角線(稱為主對角線)上的元素均為1。
除此以外全都為0。
根據單位矩陣的特點,任何矩陣與單位矩陣相乘都等於本身,而且單位矩陣因此獨特性在高等數學中也有廣泛應用。
擴充套件資料矩陣a為n階方陣,若存在n階矩陣b,使得矩陣a、b的乘積為單位陣,則稱a為可逆陣,b為a的逆矩陣。若方陣的逆陣存在,則稱為可逆矩陣或非奇異矩陣,且其逆矩陣唯一。
3樓:樂觀的新幾次哇
(1)∵(a-e)(b-e)=ab-a-b+e∴(a-e)(b-e)=e
∴a-e可逆,並且逆矩陣為b-e
(2)∵a+b=ab
∴a(b-e)=b
這樣後面應該會了吧
(3) 由(a-e)(b-e)=(b-e)(a-e)=e
∴ab-a-b+e=ba-b-a+e
∴ab=ba
4樓:手機使用者
(1)由a+b=ab,加項後因式分解得有ab-b-a+e=(a-e)(b-e)=e,
所以a-e可逆,且(a-e)-1=b-e;
(2)由(1)得,(b-e)-1=a-e,即a=e+(b-e)-1.
利用分塊矩陣求逆的法則:a0
0b)-1
=a-10
0b-1,
有(b-e)-1=
0-302
0000
1]-1=
a001
]-1=a
-1001
利用2階矩陣快速求逆法得a-1
=012
-130,
故(b-e)-1=01
20-13
0000
1,故a=e+(b-e)-1=
1120
-1310
002.
已知A,B為正定矩陣,AB是否正定
若a與b都是正定矩陣,則a b也是正定矩陣,但a b則不一定是正定矩陣。例如a e與b 2e都是正定矩陣,但a b e是負定矩陣。設a b是正定矩陣 a b正定麼 可以證明這裡總是嚴格不等式,不會取等號,除非矩陣是1階的首先,存在可逆陣c使得a cc t,再令d c bc 那麼 a b c i d ...
設A,B和AB都是n階方陣,且都可逆,試證明矩陣A
根據下圖的做法就可以湊出它的逆矩陣,可以有兩種表達形式。設a,b,a b,均為n階可逆矩陣,證明a 1 b 1為可逆矩陣,並寫出 a 1 b 1 1,寫出過程,謝謝 容易驗證 a 1 a b b 1 b 1 a 1.由於可逆 內陣的逆陣可逆,可逆陣的乘積容可逆,由上式知 a 1 b 1可逆.再由性質...
A,B都是n階矩陣且ABAB,求證ABBA
a,b都是n階矩陣 假設矩陣a矩陣b ab a b,a b 0 ab ba 設a,b都是n階矩陣,ab a b,證明 1 a e,b e都可逆 2 ab ba 1 a e,b e是n階方陣,b e a e b e ab a b e e因此,a e,b e互為逆矩陣 2 根據 1 的結論有 b e a...