求高數大神解釋下二重積分輪換對稱性的內容

2021-03-04 09:21:28 字數 2365 閱讀 8420

1樓:mc海的相思

你的理解是來對的。

自2xdxdy和2ydydx是不一樣的。

這道題是輪換bai對稱性中du比較簡單的,將zhix與y對換,得到的積分是相dao等的。對任意二重積分都成立,無論對稱與否。這裡明白嗎?

因為把x與y對換相當於把x軸和y軸互換,裡面的積分函式所圍圖形的體積是不變的,所以積分相等,但是積分割槽域d也相應的變了,對於本題來說x與y互換後積分割槽域d仍然是d,所以i=i1 i=i2,所以二分之一i=i1+i2,其中i1+i2可以化簡成你最後一行的形式 。不知道你明白沒?精妙的地方是積分割槽域d沒變,所以i1可以和i2相加。

關於二重積分輪換對稱性問題

2樓:諾言_雨軒

今天我抄和樓主遇到了

同樣的問題,不過我解決了。可能這麼多年樓主已經解決問題了,不過我還是在這裡說一下。首先,樓主舉出的例子在第一段「得到」緊跟的那個等式是錯誤的,原因在於用-x代替x時,只是把積分變數和被積函式換掉了,而沒有換掉積分上下限。

比如x從0到1,用-x替代時,上下限對應為從0到-1,而不是-1到0,所以替換掉的結果和原式互為相反數了

3樓:匿名使用者

不是這樣的,

1對於dxy是關於y軸對稱的區域,滿足∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy

(所以如果f(x,y)是個回關於x的奇函式的話,

答f(-x, y)= -f(x,y)

所以∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy= -∫∫f(x, y)dxdy

得到∫∫f(x,y)dxdy=0)

2如果dxy是關於y=x對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(y, x)dxdy

(所以如果積分函式滿足f(y,x)= -f(x,y),就能得出∫∫f(x,y)dxdy=0)

3如果dxy是關於y=-x對稱,那麼∫∫f(x,y)dxdy=∫∫f(-y, -x)dxdy

4關於dxy是原點對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(-x, -y)dxdy

4樓:援手

你說的bai那幾種情況都du

不是輪換對稱性

,首先所zhi謂輪換對稱dao性就是,如果把f(x,y)中的版x換成權y,y換成x後,f(x,y)的形式沒有變化,就說f(x,y)具有輪換對稱性。例如x^2+y^2有輪換對稱性,而2x+3y沒有輪換對稱性(因為換完後是2y+3x,和原來的不一樣)。下面說明輪換對稱性在二重積分中的應用,我們知道二重積分的積分割槽域的邊界可以用方程f(x,y)=0表示,如果這裡的f(x,y)具有輪換對稱性,那麼被積函式中的x和y互換後積分結果不變。

例如∫∫x^2dxdy,積分割槽域為圓周x^2+y^2=1,由於輪換對稱性可知∫∫x^2dxdy=∫∫y^2dxdy(這就是把被積函式中的x換成了y),因此積分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用極座標計算就簡單多了。有不明白的地方歡迎追問。

關於二重積分的輪換對稱性問題

5樓:

二重積分輪換對稱性,一點都不難

6樓:援手

你說的復那幾種情況都制不是輪

換對稱性,首先所謂bai輪換對稱性就是,du如果zhi把f(x,y)中的x換成

daoy,y換成x後,f(x,y)的形式沒有變化,就說f(x,y)具有輪換對稱性。例如x^2+y^2有輪換對稱性,而2x+3y沒有輪換對稱性(因為換完後是2y+3x,和原來的不一樣)。下面說明輪換對稱性在二重積分中的應用,我們知道二重積分的積分割槽域的邊界可以用方程f(x,y)=0表示,如果這裡的f(x,y)具有輪換對稱性,那麼被積函式中的x和y互換後積分結果不變。

例如∫∫x^2dxdy,積分割槽域為圓周x^2+y^2=1,由於輪換對稱性可知∫∫x^2dxdy=∫∫y^2dxdy(這就是把被積函式中的x換成了y),因此積分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用極座標計算就簡單多了。有不明白的地方歡迎追問。

求教大神!二重積分輪換對稱性是什麼意思?不懂啊!謝謝了

7樓:釋樹枝練雪

這個輪換對稱性本質就是x=y,即將所有x換成y,y換成x,所有相關的方程與換之

前的方程一模一樣。回如果在二重答積分中出現,一般會用到函式奇偶性或是積分割槽間的對稱性:在拉格朗日法求最值時也會有這種情況,,這時候只需新增方程x=y便能迅速求解極值點。

這好像是張宇那貨書上的名詞吧?

高數題,關於二重積分。根據輪換對稱性,為什麼不是我寫的那樣?

8樓:尹六六老師

根據奇偶對稱性

∫∫xdxdy=∫∫ydxdy=0

高數二重積分,高數二重積分題目

這是我的理解 二重積分和二次積分的區別 二重積分是有關面積的積分,二次積分是兩次單變數積分。當f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定義一個對y連續的函式g x,y y...

二重積分求極限問題,高數二重積分求極限問題的過程

分子積分變數 與t無關,則直接可以積分。2 0,t rf r dr 因為屬於0 0型,使用羅比塔法則上下求導,lim 2 tf t 3 t 2 t 0 lim 2 f t dr 3t t 0繼續羅比塔法則 lim 2 f t 3 t 0 3 2f 0 高數二重積分求極限問題的過程 利用積分中值定理,...

二重積分的概念與性質,高數 二重積分的概念與性質

設二元函式z f x,y 定義在有界閉區域d上,將區域d任意分成n個子域 i i 1,2,3,n 並以 i表示第i個子域的面積.在 i上任取一點 i,i 作和lim n n i 1 i,i i 如果當各個子域的直徑中的最大值 趨於零時,此和式的極限存在,則稱此極限為函式f x,y 在區域d上的二重積...