1樓:千山鳥飛絕
1、對數函式的運算公式如下圖所示:
2、根據對數公式舉例計算如下:
2樓:angela韓雪倩
1、a^log(a)(b)=b
2、log(a)(a)=1
3、log(a)(mn)=log(a)(m)+log(a)(n);
4、log(a)(m÷n)=log(a)(m)-log(a)(n);
5、log(a)(m^n)=nlog(a)(m)
6、log(a)[m^(1/n)]=log(a)(m)/n
擴充套件資料:
一般地,對數函式以冪(真數)為自變數,指數為因變數,底數為常量的函式。
對數函式是6類基本初等函式之一。其中對數的定義:
如果ax=n(a>0,且a≠1),那麼數x叫做以a為底n的對數,記作x=logan,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。
一般地,函式y=logax(a>0,且a≠1)叫做對數函式,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函式,叫對數函式。
其中x是自變數,函式的定義域是(0,+∞),即x>0。它實際上就是指數函式的反函式,可表示為x=ay。因此指數函式裡對於a的規定,同樣適用於對數函式。
在實數域中,真數式子沒根號那就只要求真數式大於零,如果有根號,要求真數大於零還要保證根號裡的式子大於等於零(若為負數,則值為虛數),底數則要大於0且不為1。
對數函式的底數為什麼要大於0且不為1?【在一個普通對數式裡 a<0,或=1 的時候是會有相應b的值。但是,根據對數定義:
log以a為底a的對數;如果a=1或=0那麼log以a為底a的對數就可以等於一切實數(比如log11也可以等於2,3,4,5,等等)】
通常我們將以10為底的對數叫常用對數(***mon logarithm),並把log10n記為lgn。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logen 記為in n。
根據對數的定義,可以得到對數與指數間的關係:
3樓:drar_迪麗熱巴
對數的運算性質
當a>0且a≠1時,m>0,n>0,那麼:
(1)log(a)(mn)=log(a)(m)+log(a)(n);
(2)log(a)(m/n)=log(a)(m)-log(a)(n);
(3)log(a)(m^n)=nlog(a)(m) (n∈r)
(4)log(a^n)(m)=(1/n)log(a)(m)(n∈r)
(5)換底公式:log(a)m=log(b)m/log(b)a (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)n=n;
log(a)a^b=b 證明:設a^log(a)n=x,log(a)n=log(a)x,n=x
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)m^(1/n)=(1/n)log(a)m , log(a)m^(-1/n)=(-1/n)log(a)m
2.log(a)m^(m/n)=(m/n)log(a)m , log(a)m^(-m/n)=(-m/n)log(a)m
3.log(a^n)m^n=log(a)m , log(a^n)m^m=(m/n)log(a)m
4.log(以 n次根號下的a 為底)(以 n次根號下的m 為真數)=log(a)m ,
log(以 n次根號下的a 為底)(以 m次根號下的m 為真數)=(n/m)log(a)m
5.log(a)b×log(b)c×log(c)a=1
對數公式是數學中的一種常見公式,如果a^x=n(a>0,且a≠1),則x叫做以a為底n的對數,記做x=log(a)(n),其中a要寫於log右下。其中a叫做對數的底,n叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
4樓:菅婷玉象葳
①loga(mn)=logam+logan;
②loga(m/n)=logam-logan;
③對logam中m的n次方有=nlogam;
如果a=e^m,則m為數a的自然對數,即lna=m,e=2.718281828…為自然對數
的底。定義:
若a^n=b(a>0且a≠1)
則n=log(a)(b)
基本性質:
1、a^(log(a)(b))=b
2、log(a)(mn)=log(a)(m)+log(a)(n);
3、log(a)(m÷n)=log(a)(m)-log(a)(n);
4、log(a)(m^n)=nlog(a)(m)5、log(a^n)m=1/nlog(a)(m)推導:1、因為n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。
2、mn=m×n
由基本性質1(換掉m和n)
a^[log(a)(mn)]
=a^[log(a)(m)]×a^[log(a)(n)]由指數的性質
a^[log(a)(mn)]=a^
又因為指數函式是單調函式,所以
log(a)(mn)
=log(a)(m)
+log(a)(n)
3、與(2)類似處理
m/n=m÷n
由基本性質1(換掉m和n)
a^[log(a)(m÷n)]
=a^[log(a)(m)]÷a^[log(a)(n)]由指數的性質
a^[log(a)(m÷n)]=a^
又因為指數函式是單調函式,所以
log(a)(m÷n)
=log(a)(m)
-log(a)(n)
4、與(2)類似處理
m^n=m^n
由基本性質1(換掉m)
a^[log(a)(m^n)]=^n
由指數的性質
a^[log(a)(m^n)]=a^
又因為指數函式是單調函式,所以
log(a)(m^n)=nlog(a)(m)基本性質4推廣
log(a^n)(b^m)=m/n*[log(a)(b)]推導如下:
由換底公式(換底公式見下面)[lnx是log(e)(x),e稱作自然對數的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)換底公式的推導:
設e^x=b^m,e^y=a^n
則log(a^n)(b^m)=log(e^y)(e^x)=x/yx=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)由基本性質4可得
log(a^n)(b^m)
=[m×ln(b)]÷[n×ln(a)]
=(m÷n)×
再由換底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]
5樓:陳淑珍邗甲
1對數的概念
如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做
以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.
由定義知:
①負數和零沒有對數;
②a>0且a≠1,n>0;
③loga1=0,logaa=1,alogan=n,logaab=b.
特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718
28…)為底的對數叫做自然對數,記作logen,簡記為lnn.
2對數式與指數式的互化
式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數)
3對數的運算性質
如果a>0,a≠1,m>0,n>0,那麼
(1)loga(mn)=logam+logan.
(2)logamn=logam-logan.
(3)logamn=nlogam
(n∈r).
問:①公式中為什麼要加條件a>0,a≠1,m>0,n>0?
②logaan=?
(n∈r)
③對數式與指數式的比較.(學生填表)
式子ab=nlogan=b名稱a—冪的底數
b—n—a—對數的底數
b—n—運算性
質am·an=am+n
am÷an=
(am)n=
(a>0且a≠1,n∈r)logamn=logam+logan
logamn=
logamn=(n∈r)
(a>0,a≠1,m>0,n>0)
難點疑點突破
對數定義中,為什麼要規定a>0,,且a≠1?
理由如下:
①若a<0,則n的某些值不存在,例如log-28
②若a=0,則n≠0時b不存在;n=0時b不惟一,可以為任何正數
③若a=1時,則n≠1時b不存在;n=1時b也不惟一,可以為任何正數
為了避免上述各種情況,所以規定對數式的底是一個不等於1的正數
6樓:吉祥
1、對數的概念性質及其運算性質,換底公式
2、對數函式的性質
對數函式在高考中經常出現,高考中一般不單獨考查運算,而以考查對數函式的圖象、性質為主,性質又以單調性為主,有時在大題中與其他函式綜合,這時一般要用導數解決,選擇題,填空題和大題都有可能會出現,難度一般不大,只要掌握好圖象和基本性質就不難解決。
從平時做題和考試來看,很多學生在涉及對數內容時常出錯,主要表現為公式記錯,或特殊值記不牢,或基本方法沒掌握好,複習時一定要抓住重點,記牢記熟公式
在新課標中,反函式只要求瞭解指數函式與對數函式互為反函式即可,這比之前的要求降低很多,所以大家複習不用做難的拓展題,沒必要。
7樓:釗凝夢練谷
1.定義:如果a的x次方等於n,(a>0且a不等於1,n>0),則x叫做以a為底的n的對數,記為loga
n.數學語言即:a^x=n(a>0且不為1,x=logan.定義是數學最原始、最基本的東西,必須掌握。換算公式是通過定義推匯出來的。
2。對數的基本公式:
loga
n^x=xloga
n;loga
n=logb
n/logb
a(換底公式)
loga(ab)=loga
a+loga
bloga(a/b)=loga
a-loga
ba^logan=n
8樓:肖繼說影視
指數函式運演算法則公式,對數函式和指數函式的一個重要的公式
求對數函式的所有運算公式,所有指數對數函式計算公式
lg5 lg 10 2 lg10 lg2 1 lg2 1 a 基本性質 1 a log a b b 2 log a a b b 3 log a mn log a m log a n 4 log a m n log a m log a n 5 log a m n nlog a m 6 log a n ...
對數函式的知識,對數函式知識
一般地,如果a a大於0,且a不等於1 的b次冪等於n,那麼數b叫做以a為底n的對數,記作log an b,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。一般地,函式y log a x,其中a是常數,a 0且a不等於1 叫做對數函式,它實際上就是指數函式的反函式,可表示為x a y。因此指...
對數函式方程 數學 對數函式
lg 12 5x lg 3 2x lg 4 3x lg 2x 1 lg 12 5x 3 2x lg 4 3x 2x 1 所以 12 5x 3 2x 4 3x 2x 1 所以 12 5x 2x 1 4 3x 3 2x 10x 2 19x 12 6x 2 x 124x 2 20x 0 所以x1 0,x2...